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ABSTRACT

A reproducing-kernel Hilbert space approach to image inter-
polation is introduced. In particular, the reproducing kernels
of Sobolev spaces are shown to be exponential functions that
give rise to alternative interpolation kernels. Both theoret-
ical and experimental results are presented, indicating that
the proposed exponential functions perform better in terms
of SNR and of boundary-effects removal than currently avail-
able methods, in particular polynomial-based kernels, while
introducing no additional computational overhead.

1. INTRODUCTION

Interpolation is needed in several image processing tasks such
as rotation, translation, resizing and derivative evaluation.
The underlying idea in current linear interpolation methods
corresponds to regularity constraints that are imposed on
the continuous-domain image where the pixel values provide
its sampled version. For example, sinc-based interpolation
kernels assume bandlimitedness (apodized sinc, discrete sinc)
while other methods assume piecewise polynomial models
(nearest neighbor, linear, Schaum, Keys, Dodgson, B-spline,
Meijering and OMOMS [1,2]). Every model converges to
the original function as the sampling interval shortens and
the corresponding approximation error can be characterized
by [1]: 3 "

[x — %[, xC-A ||x HLZ. (1)

Here, x is the original continuous domain signal, x*) is its
Lth derivative, X is the interpolated signal and A is the sam-
pling interval. In such a formulation, the parameters L and
C' are the approximation order and the proportional con-
stant, respectively; and they provide a means for comparing
the various reconstruction (interpolation) methods. Both
theoretical and experimental studies have shown that the
piecewise-polynomial B-spline kernels perform better than
other currently available designs [3].

Non-linear interpolation methods correspond to edge-
directed methods [4-7], to wavelet transform operations [8,9]
and to PDE (Partial Differential Equation) models [10] to
name a few. These methods impose additional constraints on
the continuous-domain signal. Edge-directed methods spa-
tially adapt the interpolation coefficients to better match
local structures around edges. Multiresolution approaches
aim at properly modeling the wavelet coefficients of higher
resolutions based on the given low resolution image. Pos-
sible models are an exponential decay at different scales or
the mixture of Gaussians model imposed on the wavelet co-
efficients. Super resolution approaches also use additional
information within the wavelet domain. This information,
however, often relies on training data sets rather than on an
analytic model. These adaptive methods aim at improving
the subjective quality of the interpolated image rather than
minimizing the error measure of (1). They rely on training

data sets and on iterative algorithms, as well as on statistical
models. This, in turn, gives rise to increased computational
complexity and to possibly poor performance for images that
do not properly fit the imposed model. Also, these method
are often restricted to dyadic resolution enhancement and
may be found less suitable for practical applications.

Focusing on the error measure of (1), an alternative linear
interpolation approach is introduced in which a less restric-
tive constraint is imposed on the continuous-domain signal.
It is suggested here to use the Sobolev space framework for
this purpose. Sobolev spaces consist of smooth functions
and they serve as the underlying continuous-domain model
in several image processing tasks [11-13]. Further, Sobolev
functions are dense in L2 and they can properly approxi-
mate an arbitrary continuous-domain finite-energy signal. It
seems, however, that the reproducing-kernel Hilbert space
(RKHS) property of these spaces has not been investigated
within the context of image interpolation. It will be shown
that this property produces exponential-based interpolation
kernels having attractive properties in terms of approxima-
tion error characterization while experimental results will
further support these findings.

2. EXPONENTIAL-BASED INTERPOLATION
FUNCTIONS

Let HY be the Sobolev space of order p. This space consists
of all one-dimensional finite-energy functions defined on the
real line for which their first p derivatives are of finite energy
as well. The corresponding inner product is given by

P
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where {)\n} is an arbitrary set of positive numbers and

(x.¥)p, = / x(s) - y(s) ds. (3)
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It then follows that the reproducing kernel of HY is given by

1
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where F~! denotes the inverse Fourier transform operation.
Recalling the binomial coefficients, one may choose A, = (Z )

to yield
. 1
o(s,t) =F {7(1_’_“}2)1)}(5—75). (5)

The ensued kernels correspond to exponential functions and
they are given in Table 1. Other choices for {A,}, will not be
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Figure 1: A vector interpretation of the ideal sampling pro-
cess in a Sobolev space. S is the sampling space. It is deter-
mined by the exponential reproducing kernel of the Sobolve
space and by the sampling points. Psx is the known portion
of the continuous-domain signal x that is captured by the
sampling process.

Table 1: Reproducing kernels of Sobolev spaces.
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considered here. Being an RKHS, the Sobolev space frame-
work suggests an orthogonal projection interpretation for the
ideal sampling process [14, 15]. Let x(t) be an arbitrary
Sobolev function and let A = {t,}, be a set of sampling
points. It then follows that the sample values satisfy

X(tn) = (x(-); (s tn)) (6)

while the set of functions {¢(-, t.)},, constitutes a Riesz basis
for their span

S = Span{p(-,tn)}. (7)

The corresponding Gram matrix is given by
G(m,n) = (tm, tn), (8)

and the orthogonal projection of x onto the sampling space
is given by

Psx = Z an - (-, tn). 9)

n

Here, a = G~ '¢ while ¢ denotes the ideal samples of x on
A. The unknown portion of x that is not captured by the
sampling process is Ps1x = x — Psx (Figure 1). In shift-
invariant cases, where A consists of an infinite number of
uniformly-spaced sampling points, G~! can be replaced by a
proper digital filter; this filter has a rational transfer function
originating from the exponential terms that compose (s, t).

The sample sequence ¢ may be interpreted by means of
the representation coefficients of Psx with respect to the
bi-orthogonal set of {¢(-,tn)}, . That is,

Psx = ch - n(s), (10)

n

where bi-orthogonality is taken in the Sobolev sense. i.e.,

Yn(s) =D Gl - (5, ). (11)

Sobolev
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Figure 2: Sobolev (solid), cubic B-spline (dashed) and sinc
(dotted) interpolation functions for a unit sampling step.
The Sobolev order is p = 3.
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Figure 3: Error kernel for Sobolev (dashed), for B-spline
(dash-dotted), for OMOMS (dotted) and for the sinc (solid)
functions. The parameter p = 3 denotes the Sobolev order.

Each function 1, is composed of a weighted sum of shifted
exponential functions and owing to the RKHS property
of HY they are interpolative. Figure 2 compares these
exponential-based interpolating functions with their B-spline
counterparts and with the sinc function. Unlike currently
available interpolation kernels, the proposed functions do
not comply with the partition-of-unity condition although
this condition is asymptotically met as the Sobolev order p
increases.

When modifying the sampling grid, the ensued interpo-
lating functions {¥n}, scale accordingly. This scaling prop-
erty does not apply, however, to the exponential functions
{¢n},, which remain unscaled but align themselves to the
new grid instead. Nevertheless, both {¢n}, and {¢.}, span
the same sampling space S. In this regard, the error kernel
introduced in [1] for the shift-invariant case provides a means
for comparing between various generating functions (inter-
polative and non-interpolative). It describes the average Lo
error between the original function and its interpolated ver-
sion where averaging is taken over all possible phase shifts
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Determine: Sobolev order, p.
Neighboring pixels, N.
(typically, p=3, N=11)

!

{ Calculate the matrix G-! of size N x N. }

!

{ Start with the first pixel to be interpolated. J

!

{ Locate N x N neighboring pixels. ‘

(The central pixel is the local origin)

!

{ Determine the interpolation coordinate T }

I

[ Evaluate the vector b of size N. }

!

{ Calculate the interpolated value Pgx(7). }

I

4{ Move to the next pixel. J

Figure 4: A flow chart of the proposed interpolation method.

of the sampling grid. This kernel is given by

2
‘ZM o(w+ 27rk)‘ + Y0 10w + 27k)

E(w) 5 , (12)
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where ® denotes the Fourier transform of ¢. Figure 3 depicts
this kernel for several generating functions, showing that the
proposed exponential functions introduce less approximation
error than the B-spline and the OMOMS functions at the
required lower frequency band. Unlike other piecewise poly-
nomial functions, however, F(w) of the proposed exponential
functions does not equal zero at the origin although it con-
verges to this value as the Sobolev order p increases.

The reproducing kernel of a two-dimensional Sobolev
space is not a separable function. The Fourier transform of
such kernels is given by ®(u,v) = 1/(1+u?+v?*)? ,p > 2 and
the radially symmetric space-domain kernels are given by
o(r) = 2wPrP K1 (2mr) /T (p) where 12 = 22 4 y*, K, (+)
denotes the Bessel function of the third kind of order n and
I" is the gamma function. Nevertheless, a separable model
allows for a relatively short run-time implementation that is
comparable with other linear interpolation methods and is
therefore adopted in this work as well.

3. COMPUTATIONAL COMPLEXITY

The Gram matrix formulation of (9) is preferable over the
oftenly used shift-invariant structure due to the finite rather
than an infinite number of samples that are available for an
image. In such a formulation, the evaluation of the matrix
G~! in (9) introduces a negligible computational overhead
for images of standard size. Notwithstanding, the significant
values of G~! are located near the main diagonal and large
images may be interpolated by considering a relatively small
neighborhood of pixels. Therefore, the proposed interpola-
tion approach requires an off-line evaluation of G~! having
a relatively small size and it evaluates a single pixel by the
following finite-dimensional discrete-domain inner product

Psx(t)=c-G ' -b. (13)

Rotation 4 of 15 Rotation 15 of 15
Figure 5: An example of an image rotation using the pro-
posed exponential-based interpolation functions. Further
image details are shown in Figure 7.

Here, 7 is the interpolation coordinate, Psx(7) is inter-
polated value, ¢ is an N-dimensional vector corresponding
to the values of neighboring pixels located at {¢.}, and
bn = @(7,tn) corresponds to N samples of the reproduc-
ing kernel of HY. The size of G~ 'is N x N and it is given
in (8). In practice, the choice of N = 11 was shown to be
adequate for a Sobolev model of p = 3. Every interpolated
pixel is separately evaluated by identifying its neighbors c,
by identifying its relative location within this neighborhood
tau, and by applying (13) to yield its value. Figure 4 further
depicts a flow chart of the algorithm. As for two-dimensional
signal interpolation, the separability assumption enables one
to apply

Psx(7a,7y) = by -G™'c- G by (14)

)
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W

Figure 6: Cardiac MRI image.
shown in Figure 7.

Further image details are
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Lena

B-spline, SNR = 28.6[dB]

Sobolev, SNR = 31.7[dB]

Patient: 8%
_ Date: 26
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Date: 26
£ Mach

B-spline, SNR = 22.1[dB]
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Figure 7: An image rotation experiment. Shown are portions of Lena (first column) and of the Cardiac MRI image (second
column). SNR values correspond to full image data having applied 100 rotations of 3.6° each. The cubic B-spline model is
compared with the proposed exponential-based interpolation kernel while assuming a Sobolev order of p = 3.
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The proposed approach is similar to linear interpolation
methods. These methods are also composed of a pre-filtering
stage for extracting proper representation coefficients and of
a pointwise evaluation of the continuous-domain signal at the
required grid. It then follows that the computational com-
plexity of the proposed approach is similar to convolution-
based interpolation methods while no iterative algorithm or
a-priori knowledge is required for the task at hand. It is
noted here that when considering piecewise-polynomial mod-
els, the proposed exponential-based model requires several
additional floating-point operations per pixel due to the ex-
ponential kernels ¢ that are being evaluated during the in-
terpolation process.

4. EXPERIMENTAL RESULTS

The proposed exponential kernel have been compared with
the cubic B-spline interpolation function while considering
a Sobolev order of p = 3. Cubic B-spline interpolation pro-
vides a good cost-performance trade off and was therefore
chosen. The proposed method and the B-spline method were
both implemented using a Gram matrix formulation. Such
an implementation was shown to yield SNR values of almost
2[dB] better for the B-spline model than digitally filtering
the image as suggested in [1]. This Gram matrix formu-
lation does not require extracting the image by its mirror
version either.

Following [1], successive image rotations were applied to
an image until it reached its starting position allowing for
an SNR value calculation. Figure 5 depicts several such ro-
tations using the proposed interpolation function. The pro-
posed method was shown to yield better SNR values than
the values obtained by the B-spline method. Considering
the image of Lena, for example, 15 rotations of 24° each,
yield an SNR value of 36.5[db] compared to 33.9[db]. Such
an experiment was also conducted in [1] where an SNR value
of 32.0[db] was reported for digitally filtering the image by
a cubic B-spline model, and where a value of 34.29[db] was
reported for the piecewise polynomial cubic OMOMS (op-
timal maximal order minimal support) model. Also, the
cardiac MRI image (Figure 6) was shown to yield SNR val-
ues of 28.1[db] compared to 26.0[db]. Similar results were
obtained for other images [16] suggesting that the proposed
exponential-based model may perform better than piecewise-
polynomial functions. In this regard, it is noted that the pro-
posed method outperformed the cubic B-spline and the cubic
OMOMS methods for all images that have been examined
in this work. Figure 7 further suggests that the proposed
functions may visually preform better as well. SNR values
were calculated based on a circular region having a diame-
ter of 90% of the image’s dimensions. Nevertheless, when
considering larger circular areas, boundary effects lead to
more prominent results in favor of the proposed exponential
functions [16].

5. CONCLUSIONS

A reproducing-kernel Hilbert space approach has been pro-
posed for image interpolation. Sobolev (smooth) functions
are dense in Lo providing a very useful framework for this
purpose. The reproducing kernels of these Sobolev spaces are
shown to be exponential rather than polynomial functions
and the ideal sampling process is characterized by a set of
proper inner products. These kernels also give rise to inter-
polation functions that outperform currently available meth-
ods while introducing no additional computational overhead.
Theoretical and experimental results have been presented in-
volving image rotation. Our conclusion is that the proposed
method could provide a better alternative to the use of B-
spline kernels and to the use of piecewise-polynomial models
for convolution-based image interpolation while introducing
no additional computational overhead.
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