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ABSTRACT

This paper is devoted to the blind separation of convolutive mix-
tures of possibly non circular linearly modulated signals with un-
known (and possibly different) baud rates and carrier frequencies.
In this context, the received signal is sampled at any rate satisfy-
ing the Shannon sampling theorem. The corresponding discrete-
time signal is cyclostationary with unknown cyclic frequencies. It
is shown that if the various source signals do not share any cyclic
frequency, the local minima of the constant modulus cost function
are separating filters. In contrast with the circular sources case, the
minimization of the Godard cost function in general fails if non cir-
cular sources have the same rates and the same carrier frequencies.
It is shown that this is due to the existence of non separating lo-
cal minima of the Godard cost function. If the frequency offsets of
the sources are available at the receiver side, a simple modification
of the Godard criterion is proposed. It achieves the separation of
any non circular linearly modulated signals sources. The results of
this paper show that the separation of unknown non circular linearly
modulated signals is possible only if their frequency offsets can be
blindly estimated prior to the separation scheme.

1. INTRODUCTION

The blind source separation of convolutive mixtures of linearly
modulated signals has mainly be studied in the case where the sig-
nals share the same known baud rate, and when the sampling fre-
quency of the multivariate received signal coincides with this baud-
rate. In this context, to be refered to in the sequel as the station-
ary case, the discrete-time received signal coincides with the output
of an unknown MIMO filter driven by the sequences of symbols
sent by the various transmitters. In most cases, these sequences are
independent and identically distributed, and several methods have
been proposed in order to extract each of them from the observa-
tion. The source separation problems that are met in the context of
passive listening are however more complicated because the trans-
mitters are in general completely unknown from the receiver, and
have no reason to transmit linearly modulated signals sharing the
same baud-rates. It is therefore quite relevant to address the prob-
lem of blind separation of linearly modulated signals with unknown,
and possibly different, baud rates. In this context, the received sig-
nal is sampled at any frequency satisfying the Shannon sampling
theorem, so that the corresponding discrete-time signal is cyclosta-
tionary with unknown cyclic frequencies. If the cyclic frequencies
were known at the receiver side, it would be easy to generalize the
usual blind source separation approaches based on the optimization
of contrast functions depending on higher order cumulants. How-
ever, when the cyclic frequencies are unknown, it is impossible to
estimate consistently the cumulants, a conceptual problem first re-
marked by Ferreol and Chevalier ([3]) in the context of blind separa-
tion of instantaneous mixtures. An obvious approach would consist
in estimating the unknown cyclic frequencies. However, this is a
difficult task if the excess bandwidths of the transmitted signals are
low and if the duration of observation is not large enough.

The minimization of the Godard constant modulus cost function
allows to achieve source separation in the stationary context ([6]).
In contrast with the cumulants, the constant modulus cost function

can be consistently estimated in the cyclostationary context. In [4],
we have shown that if the source signals transmit second-order cir-
cular symbol sequences, then, the minimization of the Godard cost
function allows to extract the sources using a deflation approach if
their baud-rates are different one from each others. If certain baud
rates coincide, sufficient conditions for the separation have been es-
tablished in [5]. Although we have not been able to prove that sep-
aration is achieved in the most general case, all the simulation we
have performed strongly suggest that the minimization of the Go-
dard cost function is successfull in the circular case. The purpose
of this paper is to address this issue in the case of possibly non cir-
cular source signals. In order to simplify the presentation of our
results, we just consider the case where the non circular signals are
BPSK signals. In the non circular case, the so-called non conjugate
cyclic frequencies, whose values depend on the carrier frequency
offsets and the baud rates of the source signals, play an important
role. We prove that the Godard cost function is still successful if
the sources do not share the same cyclic and non conjugate cyclic
frequencies. In contrast with the circular case, we however prove
that the minimization of the Godard cost function fails to separate
2 BPSK signals sharing the same baud rate and the same carrier
frequency. This is because the Godard cost function shows non
separating local minima, and the minimization algorithms seem to
converge quite often towards these points. However, we show that
if the carrier frequency offsets of the transmitted signals are known
or well estimated, then it is possible to modifify the Godard cost
function in order to achieve source separation of any usual non cir-
cular linearly modulated signals. Our results thus show that in order
to separate non circular linearly modulated signals, it is necessary
to estimate their frequency offsets prior to the source separation.
Fortunately, this is a much easier task than the estimation of baud
rates, because the non conjugate cyclic correlation coefficents of
the received signal at twice the frequency offsets are not affected by
possible low excess bandwidths of the source signals (see [1]).

General notations: If (u,),c7 is a discrete-time sequence, we
denote by < u, > the time average operator defined as

. 1 N
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If (x(n)),ez is a discrete-time cyclostationary sequence, we denote
by Rﬁca) (1) the cyclic correlation coefficient at lag 7 of signal x at

cyclic frequency a, and by S)(COO (e¥™V) the corresponding cyclic
spectrum. If x is non circular, the sequence n — E(x(n+ 7)x(n)) is
non identically zero, and coincides with a sum of sinusoids. The fre-
quencies of the corresponding Fourier-like expansion are called the
non conjugate cyclic frequencies of x, and the related coefficients,

denoted REQ (t) for each frequency 7, are called the non conjugate
cyclic correlation coefficients.

2. PROBLEM STATEMENT.

We assume that K unknown transmitters send linearly modulated
signals sharing the same frequency bandwidth. The receiver is
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equipped with a sensor of M-arrays, and the corresponding M—
dimensional received signal is sampled at period 7, supposed to
satisfy the Shannon sampling theorem. For any k, k = 1,...,K,
the k-th transmitted signal is obtained by linearly modulating a unit
variance zero mean i.i.d. sequence of symbols. In order to simplify
the presentation of the results, each symbol sequence is assumed ei-
ther second-order circular or binary (i.e. equal to £1 and therefore
not circular). The corresponding symbol period is denoted by 7,
and it is assumed that the bandwidth of the complex envelope of the

k-th transmitted signal is [— 12+TY", IJTW} where the so-called excess

bandwidth factor 7y, belongs to [O 1). The propagation channels be-
tween each transmitter and the receiver are assumed to be frequency
selective. Moreover, the carrier frequencies of the various transmit-
ted signals of course do not coincide with the center frequency of the
receive filter of the receiver. Hence, the contribution of each trans-
mitted signal at the receiver side is corrupted by a frequency offset.
The frequency offset associated to source k is denoted Af. The
continuous-time received signal is sampled at a period 7, which is
supposed to verify 7, < miny, 1 7T |A fk\*' Under these assump-

tions, the M-dimensional dlscrete time received signal y(n) can be

written as
K .
= Y 2O by (2)]si n)

K
=Y 2ok (th,lsk(nl)>
fas| 7 =1
(D

where for each k, si(n) represents the sampled version of the k —th
transmitted signal, hy(z) = Y, ez hy;z! is the transfer function of
the 1-input / M outputs discrete time equivalent channel between
transmitter k and the receiver, and 0 f; is defined as 6 f; = Afi T.
Each signal s, is second order cyclostationary and its cyclic fre-
quencies are 0, 0y, — 0y where oy = % If s, is a BPSK signal,
the sequence n — E(sg(n+ T)si(n)) is non identically zero, and
its non conjugate cyclic frequencies are also equal to 0, o, —0y.
In the following, we assume without restriction that source sig-

E|si(n )|2 = 1 for each k.

In this paper, we study source separation methods based on the
so-called deflation approach: one of the source signal is first ex-
tracted, its contribution is cancelled from the observation, and the
procedure is iterated until extraction of all the sources. We there-
fore focus on the first step. In order to extract one of the source
signal, (y(n)),ez is filtered by a M—inputs / 1-output filter g(z) to
produce the scalar signal r(n) = [g(z)]y(n). The filter g(z) is de-
signed in such a way that r(n) coincides with a filtered version of
one of the source signals (si)i—1,... k- In the following, we denote
by I and [, the set of all cyclic and non conjugate cyclic frequencies
of r. In other words, I and I, are given by I = {0, (04 )r=1... x}
and I, = {(20 fy = 04 )g=1,... x }- I" is defined as I — {0}. If source k
is circular, then, the non conjugate cyclic correlation coefficients of
r at non conjugate cyclic frequency 26 f; + o are of course equal
to 0.

The Godard cost function J(r) is defined as J(r) =

IE(|r(n)\2—1)2 >, and can of course be written as J(r) =<
E|r(n)|* > =2 < E|r(n)]> > +1. Using the relation E|r(n)|* =
ca(r(n)) + 2 (E|r(n) 2)2 + [E(? n))|2 and the Parseval identi-
ties < (Elr(n)P)* >= Taer R (0)2 and < [E(r(n)?[* >=
Yoer |R£-f)£> (0)|?, we get immediately that

J(r) )P+ Y[R

ael,

2R (0)+1
@)

In order to express J(r) in a more convenient way, we remark that
r(n) can be written as

>+22|R

ael

=<c4(r(n)

>

Z PR fi(2) sk (n)
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where fi(z) is the transfer function fi(z) = g(ze 270fc)hy(z).
We denote by ||f¢|| the norm of filter f;(z) defined by ||fi||*> =

[71/132 |fk(e2iﬂV)|25§?) (eZinV) dv where Sﬁ?) (eZi”V) represents the

spectral density of signal (s¢(n)),cz. We finally define filter f;(z)
and signal §;(n) by

Ji@) = ﬁf |f7 5e(n) = e(@)lsw(n)

If || fi]| = 0, we put fi(z) = 0 and §;(n) = 0.t is clear that || fi|| = 1,
and that < E|§;(n)|?> >= 1. r(n) can be written as

K .
n) =Y | fll ™35 (n) )
k=1

and coincides with a filtered version of one of the source signal
if and only if the coefficients (|| fi|)k=1,. x satisfy || fx|| = 6(k —
ko)|| fi, |- After some algebra, we get that

K
Z GOIAN+2 Y 1w, Si) i 121 i 1P — 22 [l £ell?+1
k=1 k|<k2
)
where (8, ,5k,) and B(8;) are defined respectively by
a (=28 fi,) (o 26fk)
2+Re ZZR (sz ) + ¥ Res, 2 )(Rm2 ’
el ocEl
(6) 5
<E|si(n)|* >= <C4(sk)>+2+2 Z )( + Y R%(O)‘
=101
@)

3. THE SOURCE SIGNALS DO NOT SHARE THE SAME
CYCLIC AND NON CONJUGATE CYCLIC
FREQUENCIES.

We first study the behaviour of J(r) when the source signals do not
share the same cyclic and non conjugate cyclic frequencies. This in
particular implies that o, # o (i.e. Ty # T;) and 8 f # 6 f1 (Afy #
Afp). In this context, the term /(5 , $k, ) reduces to the constant term
2, and J(r) is given by

K

K
Z GOl +2 Y IfalPlful? =2 Y Ifd*+1 8)
=1

k=1 ki 7#ka

We now study the conditions under which the minimum of J(r) is
reached for a filter such that || fi || = 6 (k—ko)|| fi, ||- For this, we first
fix the unit norm filters (f;)r— 1,..k or equivalently the coefficients
(B(8k))k=1.... - Then, we minimize J w.r.t. the (|| fil) =1,
is an easy task because, as a function of the (W felDr=1....x> J( ) has
a simple expression. It can be shown that if m1nk_17_“’,([3(§k) <2,
then the minimum of J(r) w.r.t. the (||f¢||)k=1,..x is reached for
sequences such that || f|| = 6(k— ko)H i | where ko is one of the
index for which B(§y,) = ming—; 5r). We now define By, x
as Buink = minf'le.f'kH:l B (5k)- Using the above result, it can be

shown that if ming_; g Byink < 2, then the argument of the min-
imum of J(r) is reached for a filter (f;'(z),...,fx(z)) such that
13 (2) = 8(k — ko) fy; (z) where ko is one of the index for which

K Buin k- Moreover, || f 1?2 = ﬁmM

B(IfF, (2)]s, (). Finally, the min-
and the corresponding extracted

signal r*(n) coincides with r*(n) = 2™/ | 7 (2)]sk, (n). Using
iteratively this result, we finally obtain the following proposition.

and the unit

Buin ko = ming=1,..

norm filter f;*o verifies f,,in k, =

imum of J is equal to 1 — L
Buin iy
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Theorem 1 If the sources do not share the same cyclic and non
conjugate cyclic frequencies, the global minimization of the Go-
dard cost function allows to extract all the source signals using a
deflation approach if

Buinkg = _min B (§) <2, foreachk=1,....K O]
C fellAl=t

It remains to check if condition (9) holds. For circular linearly mod-
ulated signals, (9) has been proved analytically in [4]. In the case
of BPSK signals, the following result can be proved using a similar
approach.

Proposition 1 Consider a BPSK signal with symbol period T and
excess bandwidth 0 < y < 1, and assume that the sampling period T,
does not belong to {T,T /2,T /3,2T /3}. Denote by K the kurtosis of
the corresponding binary symbol sequence, k = —2. Then, Byin =

min 7y B([F(2)]s(n)) is given by

Bnin = inf (fa) 10)

)
where ®(f,) is defined by

2
AGIKG Jelfu(0)Pe " 1 dr
Pfa) = KT ey +2+4( A0S )

.t 2
e spa | |fpeta et
(Jrlfale \Zdz) (i [fu0)[2d1)? e Va@ Pt

2
1)? 2’“Tdt|

and where F ( 712#', 1;—T}']) represents the set of all square inte-

grable functions f,(t) whose Fourier transforms f,(v) are 0 out-

side the interval [— 12+Ty7 12+T7]

Nmin = mmeH | < c4(8) >, then

Moreover, if we define Nyin by

Nonin = inf ISTAGIM

e 11
per oy el Y

As Z([= 3 3] € Z(= 5 5] if 1 < . (10) implies
that considered as a function of ¥, B, (y) is decreasing. Therefore,
in order to check that f,,,(y) < 2 for y € [0,1], it is sufficient to
verify that Buin(0) < 2. If f, € Z ([~ 5. 57]) (¥ = 0), the integrals

/|fa(t)|2672m%dtv /fa(l)2eizm%dt7 /fa(t)zezm%dt
R R R

(t)2dt|” < ([ | fu(t)[2dt)*. This implies
that Brin(0) < Nimin(0) + 3. Mmin(0) can be evaluated numerically
(see [4] for more details), and it turns out that 1,,;,(0) ~ —1.36.
Therefore, B,in(0) < 1.64, thus showing that f3,,;,(0) < 2, and that
Bmin(y) <2 fory € [0,1]. Bin(y) can also be evaluated numerically
for each 7. It is represented in Figure 1

The above results show that the global minimum of the Godard
cost function corresponds to separating filters. However, in prat-
ice, minimization algorithms may converge towards local minima.
Under a technical assumption, a positive result can be established.

Proposition 2 Assume that at least one of the function fi —
B([fx(2)]sk(n)) defined on the set of all unit norm filters has no lo-
cal minimum f;} such that B([f{ (z)|sk(n)) > 2. Then, the argument

of each local minimum of the Godard cost function is a separating
filter.

Proof. We just sketch the proof of this result. For this,
we write J(r) given by (8) as J(r) = u*T(v,B) — 2u®> + 1
where u = (E£ A2 v = ML v = (i)™, B =

[

0.8 04 1

Figure 1: B, w.r.t. 7, BPSK case.

(B, BK))T and T(v,B) = X, (B(5i) —2)v2 +2. We con-
sider a local minimum (f;(z), ..., f§(z))T of J(r), and denote by
Uy, Vi, i, §i, B, the corresponding values of u, v, fi, 8, B. It is
easy to check that the point v, is a local minimum of the func-
tion v — T(v,B,). As at least one the coefficients (B(5;) —2) is
strictly negative, vi = 8(k — ko)vy, where ko is one of the index
for which B, . —2 < 0 (see e.g. [2]). This implies that || f; .|| =
8(k—ko)l|fz, |l and that the local minimum fi .(z), ..., fk«(z) isa
separating filter.

It is difficult to check analytically whether it exists k& for
which fi — B([fi(z)]sk(n)) has no local minimum f;* such that

B([ fk( )]sx(n)) > 2. However, this condition probably holds be-
cause the gradient based minimization algorithms of the functions

Ji = B([fx(2)]sk(n)) we have run always converge towards a point
for which B([fi(2)]sk(n)) < 2.

In sum, the above results indicate that if the source signals do
not share the same cyclic and non conjugate cyclic frequencies,
then, the minimization of the Godard cost function allows to extract
circular and BPSK source signals. In this context, it is therefore
possible to separate the cyclostationary signals without any knowl-
edge on their cyclic and non conjugate cyclic frequencies.

4. 2 BPSK SOURCES SHARING THE SAME BAUD-RATE
AND THE SAME CARRIER FREQUENCY.

In this section, we consider the opposite situation, namely that all
the source signals are BPSK signals with the same baud rate T, the
same carrier frequency Af, and the same excess bandwidth y. We
also denote by « and 8 f the terms o« =T, /T and 6 f = AfT,. We
recall that 7, represents the sampling period, and that we assume
that 7, does not belong to {7,7/2,T/3,2T /3}. We also assume
that the number of sources is K = 2. Our purpose is to show that
the Godard cost function has non separating local minima, and that
the corresponding minimization algorithms often converge towards
these spurious points. In order to demonstrate this, we assume that
the common excess bandwidth 7y of the 2 source signals is equal to
0. In this context, the cyclic and non conjugate cyclic correlations
coefficients at frequencies o are zero. The expression (5) of J(r)
thus reduces to:

J(r) =B )I\f1|\4+ﬁs” Hsz“
20AIPI1£IP (2+Re(R R 00) =2 (1A +112) +
(12)
where (§;) is given by
B(s) +2+ R (0)2

=<c4(5) >
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for i = 1,2. This expression is formally similar to the expression
of J in the case where the 2 sources are circular with a non zero
excess bandwidth (see [4]), except that the cyclic correlation coef-

ficients RE,(‘) 521' (0) have to be replaced by 2R§~,l_a) (0). |2R£~fC> (0)| turns
out to be less than 1 in the context of [4] and it is easy to show
that \Rgos)‘_ (0)| < 1. Therefore, it is possible to use the results of [4]
establisiled in the circular case to prove if B, and 1, defined in
Proposition 1 verify

_3ﬁmin +5+ Nmin > 0

2
2(Bmin — I)Bmin*‘l'(l* %\/z(ﬁmin* 1)— 1*nmin> < 0,

then, the argument of the global minimum of J(r) is a separating
filter, and the minimum value of J(r) coincides with 1 — 1/Bp.
For y=0, Byin == 1.19, Nyin =~ —1.36, and it is easily checked that
the above 2 conditions are satisfied. Therefore, the global mini-
mization of J(r) allows to separate the 2 BPSK signals. Moreover,
1 —1/Bmin =~ 0.16. However, J(r) has non separating local min-
ima, and as shown below, a gradient minimization algorithm of
J(r) often converges towards these local minima. In order to de-
fine these local minima, we denote by fl* (z) one of the argument

of the global minimum of B([fi (z))s1(n)) over the set of unit norm
filters with real coefficients. We denote by B ,;, the correspond-
ing minimum. It is easy to show that 3 ,;, can be evaluated using
Proposition 1 for y = 0, but in which the minimum of function &,
is evaluated over the real elements of .% ([—1/2T,1/2T]). Using
this, it can be shown that f; ,;, coincides with 7,,;, + 3, i.e. that
Bi.min = 1.64. We consider the unit norm filter with imaginary co-
efficients f5 (z) = if; (z). It is clear that B([f5(z)]s2(n)) coincides
with By in. We finally define filters f;*(z) for i =1,2 by

1 Tk

. 3

(1 + ﬁl,min)lﬂfl ( )

If re(n) = [ff@)]s1(n) + [f5(2)]s2(n), one can check that
J(r«) = 1 =2/(14 Bi min) =~ 0.25. This non separating point can
be shown to be a local minimum of J. Moreover, the gradient
minimization algorithm of J(r) seems to converge very often to one
this point rather than towards the argument of the separating global
minimum of J. To verify this, we present in Figure 5 an histogram
of the values of J(r) at convergence of the gradient minimization
algorithm. 1000 experiments have been used. It is seen that the
value of J(r) at convergence is around 0.25 in most cases, showing
that the gradient algorithm converges very often towards one of the
above local minimum.

i) =

A simple modification of the Godard cost function allows to
overcome the above problems. We assume that the carrier frequency
offset 0 f is known or correctly estimated at the receiver side, and

consider the cost function J (r) defined by
7 () =30) RV O)P (13

In our particular context of 2 BPSK signals with y =0, J (r) is given
by

K K
T =Y Bl +2 Y falPlfel? =2 Y Ifl*+1
k=1 k=1

ki#ka

where B (5;) is defined by B’ (5;) =< c4(5;) > +2. The expression
of J'(r) is thus similar to (8), except that B(5;) is now replaced by
B'(5). It is easy to check that < c4(§;) >< 0, so that ' (§;) < 2 for
each i. Theorem 1 and Proposition 2 thus imply that the global min-
imum and the local minima of J' are separating filter. This shows

that the minimization of J (r) allows to separate the 2 BPSK signals
if y = 0. This result can be partially extended if y > 0.

5. FINAL REMARKS AND CONCLUSION.

In more general contexts, J (r) is defined by substracting from J(r)
the sum of modulus squares of the non conjugate cyclic correla-
tions of r at lag O at the “significant” non conjugate cyclic frequen-
cies 20 f; corresponding to twice the carrier frequency offsets of the

BPSK signals . It can be shown that the minimization of J still al-
lows to separate source signals that do not share the same cyclic and
non conjugate cyclic frequencies, and that positive results can also
be obtained in more complicated scenarii (groups of BPSK signals
sharing the same baud rate and carrier frequency). The minimiza-

tion of J' thus appears as a reliable approach to separate convolutive
mixtures of possibly non circular linearly modulated signals. In or-

der to use J , it is of course necessary to estimate the significant non
conjugate cyclic frequencies of the received signal prior the source
separation. Fortunately, this is a much easier task than the estima-
tion of the baud rates, because the non conjugate cyclic correlation
coefficents of the received signal at twice the frequency offsets are
not affected by possible low excess bandwidths of the source sig-
nals.
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Figure 2: Values of .f(r) at convergence of the gradient algorithm.
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