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ABSTRACT

We address the problem of recovering a sparse solution of a
linear under-determined system. Two variants of this prob-
lem are studied in the literature. One is the case of a sparse
vector with only a few non-zero entries, and the other is of a
sparse matrix with few rows non-identically zero. In either
scenario, the recovery is known to be a difficult combina-
torial procedure. In this paper, we develop a method that
transforms the recovery of a sparse matrix into the vector
formulation. Our method is exact as it allows to infer the
sparse matrix from a single sparse solution vector. Once re-
duced to this basic form, known sub-optimal methods can
be employed to approximate the solution. In order to fur-
ther improve the performance, we derive a prototype algo-
rithm, called ReMBo, that combines a boosting approach
together with the reduction process. The boosting stage em-
pirically improves the recovery rate of any given sub-optimal
method. Numerical experiments demonstrate the superior
performance of ReMBo-based methods in comparison with
popular algorithms in terms of run time and empirical re-
covery rate when tested on random data.

1. INTRODUCTION

A fundamental rule of linear algebra is that a linearly in-
dependent system of equations allows for a single solution
if and only if the number of equations equals the number
of unknowns. Recently, it was shown that only a small set
of linear equations is required to identify a unique solution
vector of relatively high dimension, as long as the vector is
sparse, namely it contains only a few non-zero entries [1],[2].
The sparsity structure compensates for the missing equa-
tions, however the recovery of the sparse vector becomes
a difficult non-linear combinatorial problem. Interestingly,
many sub-optimal efficient methods achieve a high recovery
rate of the correct sparse solution when tested on a compre-
hensive set of random examples [1],[2],[3],[4],[5].

These fundamental results are the basis of compressed
sensing, a rapid developing research area that addresses var-
ious aspects related to sparsity [1],[2]. In the basic model,
referred to as single measurement vector (SMV), a vector x
is compressed into a short vector y via a linear mapping.
Under appropriate conditions the linear compression is in-
vertible if x is sparse, i.e. y can capture the entire infor-
mation about the sparse vector x [6]. Several sub-optimal
techniques for practical recovery of x from y are developed
in [1],[2],[3],[4],[7].

The SMV model was extended both theoretically and
practically to sparse matrices, having only a few rows that
are non-identically zero [8],[9]. This model is termed multiple
measurement vectors (MMV) in the literature. It appears
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that a diverse range of applications suit a sparsity profile of
this type (see [8] and the references therein). The recovery
of the sparse matrix in MMV is also combinatorial and can
be tackled with similar sub-optimal techniques [8],[9].

In this paper, we propose a strategy that simplifies the
MMV recovery problem. Specifically, we prove that for ev-
ery given MMV system there is a random construction of an
SMV problem obtained by random combination of the mea-
surements, such that the sparse solution of the SMV pre-
serves the non-zero location set with probability one. This
result relies on the observation that the non-zero location set
is the crucial information to be recovered, since once found,
the original sparse matrix is easily constructed by a simple
linear inversion.

Our second contribution addresses the practical aspect
of searching for the sparsest solution of the SMV, produced
by our reduction method. To improve the recovery rate, we
repeat the reduction step with different random combina-
tions until a sparse solution is found. This stage is referred
to as boosting and is based on simulations in which we no-
ticed that applying a sub-optimal method to a specific mea-
surement combination may yield an incorrect solution, while
for another measurement mixture the correct solution can
be obtained. Consequently, the additional iterations boost
the overall chance of recovering the non-zero location set.
We incorporate our results into a generic algorithm, which
we call ReMBo (Reduce MMV and Boost). Numerical ex-
periments demonstrate the fast run time of ReMBo-based
techniques and their high recovery rate compared to other
popular MMV algorithms.

The paper is organized as follows. In Section 2 we de-
scribe the SMV and MMV formulations and provide an
overview of known results. The reduction to SMV is pre-
sented in Section 3. The ReMBo algorithm is introduced in
Section 4 and evaluated in Section 5.

2. PROBLEM FORMULATION

Consider the following linear system

Y = AX, (1)

where A is a known m×n matrix with m < n. Our goal is to
solve for the unknown matrix X of size n×d given the m × d
measurement matrix Y where d is arbitrary. The system of
(1) is written as y = Ax when d = 1 in order to emphasize
that in this case x,y are vectors. Note that unless stated
otherwise, the problem is defined over the complex field C.

Solving for X is obviously ill-posed as (1) does not deter-
mine a unique solution for m < n. In particular, the number
of unknowns in (1) is nd which is greater than the number
of equations md. In order to allow for a unique solution,
a prior on X must be incorporated. For example, suppose
that d = 1 and x ∈ N⊥(A), where N⊥(A) is the orthogonal
space of N (A) = {x|Ax = 0}. Combining the linear prior
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x ∈ N⊥(A) with (1) leads to a unique solution that can be
obtained by simple algebraic manipulations.

In this paper, we consider a non-linear sparsity prior on
X. This prior restricts only the number of non-zeros entries
in the solution, while their specific locations and values are
not assumed. Note that, in contrast, a linear prior imposes
a strict relation between the entries of the solution.

2.1 Single Measurement Vector (d = 1)

A vector x is called K-sparse if it contains no more than K
non-zero entries. For a given vector x the support function
I(x) = {k |xk 6= 0} describes the locations of the non-zero
entries where xk stands for the kth entry of x. Thus, a K-
sparse vector x conforms with a support size |I(x)| ≤ K. A
sufficient condition for the uniqueness of a K-sparse solution
can be stated in terms of the Kruskal-rank of a matrix, which
was first used in the seminal work of Kruskal [10]:

Definition 1 The Kruskal-rank of A, denoted σ(A), is the
maximal number q such that every set of q columns of A is
linearly independent.

Theorem 1 If the vector x̄ is a K-sparse solution of y =
Ax and σ(A) ≥ 2K, then x̄ is the unique K-sparse solution
of the system.

Theorem 1 and its proof are given in [6],[9] with a slightly
different notation of Spark(A) instead of the Kruskal rank.
The SMV notation implies a linear system y = Ax accom-
panied with a K-sparse prior on x.

If x̄ is the unique K-sparse solution of the SMV prob-
lem y = Ax, then it is also the unique sparsest solution.
Therefore, recovery of x̄ can be formulated as an optimiza-
tion problem [1]:

x̄ = arg min
x

‖x‖ℓ0 s.t. y = Ax, (2)

where the pseudo-norm ℓ0 counts the number of non-zero
entries in x. The program (2) is combinatorial and solvable,
however, it is also known to be NP-hard. As an alternative,
Donoho [1] and Candés et. al. [2] study the following relaxed
convex program, referred to as basis pursuit:

min
x

‖x‖1 s.t. y = Ax, (3)

where ‖x‖1 =
∑n

i=1
|xi| is the sum over the magnitudes

of the entries of x. Basis pursuit and other polynomial-
time methods were proved to produce the sparsest solution
x̄ when K is small enough (compared to the uniqueness
bound σ(A)/2 of Theorem 1) [5],[6]. These methods become
sub-optimal when K exceeds the theoretical bounds, namely
their solution can be different from the sparsest one. In-
terestingly, extensive simulations on random data show that
x̄ can be recovered with overwhelming empirical probability
for a broad range of K. Often exact recovery is accomplished
even for K > σ(A)/2 as the uniqueness condition of Theo-
rem 1 is only sufficient. Thus, although sub-optimal, these
methods are of high practical interest.

2.2 Multiple Measurement Vector (d > 1)

Joint sparsity is a prior for (1) in the case d > 1. Under
this prior, the non-zero entries of the matrix X are confined
to a row subset, whose cardinality is known. Formally, a
K-sparse matrix X has two properties: (I) each column is a
K-sparse vector, and (II) X has no more than K rows that
are non-identically zero. The support of X is denoted as

I(X) = {k |Xk 6= 0} =
d

⋃

i=1

I(Xi), (4)

where Xk,Xi denote the kth row and the ith column of X,
respectively. Clearly, a jointly K-sparse matrix X conforms
with |I(X)| ≤ K. The system (1) is termed MMV in the
literature when the joint sparsity prior holds. Evidently, the
joint property of this prior distinguishes MMV from being a
set of independent SMV systems.

The MMV model was studied both theoretically and
practically. The following proposition shows that the unique-
ness condition σ(A) ≥ 2K of Theorem 1 can be relaxed for
an MMV system.

Proposition 1 ([8],[9]) If X̄ is a K-sparse solution matrix
for (1), and σ(A) ≥ 2K − (rank(Y) − 1), then X̄ is the
unique K-sparse solution matrix of (1).

Similarly, it was shown that the combinatorial problem

X̄ = arg min
X

|I(X)| s.t. Y = AX, (5)

recovers the unique K-sparse solution matrix of an MMV
system [9].

The optimization program (5) is also NP-hard. Several
extensions of sub-optimal SMV methods have been extended
to the MMV setting [8],[9]. These algorithms tackle the for-
mulation (5) directly. As described in the next section, our
approach is different in that we suggest to first simplify the
combinatorial problem (5) by reducing it into the SMV for-
mulation (2). No relaxation is performed during this reduc-
tion step, thus preserving the ability to recover X̄ exactly.
In turn, SMV recovery methods can be deployed to approxi-
mate the sparse solution of the produced SMV system. Due
to the special structure of our reduction method we can eas-
ily incorporate a boosting stage which further enhances the
performance. This will be discussed in Section 4.

3. DIMENSION REDUCTION FOR MMV

3.1 Paradigm

Let X̄ be the unique K-sparse solution of (1) and assume
σ(A) ≥ 2K. Our approach for the recovery of X̄ relies on
the following two key observations:

1. Determining the unknown support S = I(X̄) is a crucial
step in the sense that once S is found, X̄ is obtained
exactly.

2. The set S can be identified with probability one from an
SMV system constructed by random combinations of the
columns of Y.

These observations focus our attention on (2) rather than on
(5). As we show in Section 5, besides the obvious impact on
run time, our approach leads to recovery methods with an
empirical recovery rate that is typically higher than a direct
relaxation of (5).

3.2 Method

We now state each of our observations formally.
To prove the first observation, let AS denote the matrix

containing the subset of the columns of A whose indices
belong to S. Since X̄ is K-sparse we have that |S| ≤ K. In
addition, since σ(A) ≥ 2K > K, the matrix AS consists of
linearly independent columns implying that

(AS)†AS = I, (6)

where (AS)† = (AH
S AS)−1AH

S is the Moore-Penrose pseudo-
inverse and AH

S denotes the conjugate transpose of AS. Us-
ing S the system of (1) can be written as

Y = ASXS, (7)
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where XS is the row subset of X indicated by S. Multiplying
(7) by (AS)† on the left gives

XS = (AS)†Y. (8)

In addition, it follows from the definition of the support set
I(X) that the ith row satisfies

Xi = 0, i /∈ S. (9)

Therefore (8)-(9) allow for exact recovery of X̄ once the finite
set S is correctly recovered.

In order to construct the random SMV described in our
second observation we quote the following definition from
probability and measure theory [11],[12]:

Definition 2 A probability distribution P is called abso-
lutely continuous if every event of measure zero occurs with
probability zero.

A distribution is absolutely continuous if and only if it
can be represented as an integral over an integrable den-
sity function [11],[12]. For example, Gaussian and uniform
distributions have an explicit density function that is inte-
grable and thus both are absolutely continuous. Conversely,
discrete and other singular distributions are not absolutely
continuous. The following theorem exploits this property to
reduce (5) into (2):

Theorem 2 Let X̄ be the unique K-sparse solution matrix
of (1) with σ(A) ≥ 2K. In addition, let a be a random vector
of length d with an absolutely continuous distribution and
define the random vectors y = Ya and x̄ = X̄a. Consider
the random SMV system y = Ax. Then:

1. For every realization of a, the vector x̄ is the unique K-
sparse solution of the SMV.

2. I(x̄) = I(X̄) with probability one.

The proof of the theorem can be found in the full paper
[13]. Note that an alternative reduction approach would be
to treat the MMV system (1) as a set of independent SMV
problems. However, since a single column of X̄ may contain
zeros in some of the locations S, this approach requires to
solve each of the d SMV systems. Instead, Theorem 2 im-
plies that a single SMV problem is sufficient, thus reducing
the overall complexity. In addition, when the sub-optimality
of practical recovery methods is taken into account, it is
evident that the aggregated sub-optimality of solving d in-
dependent SMV problems is higher than solving only one.
We also note that reduction with random merging is bet-
ter than every deterministic linear merging (when X̄ is de-
terministic unknown), since for the latter there are infinite
counterexamples in which the merging process would fail to
preserve the support set S. For example, a simple summa-
tion over the columns of Y may fail if the non-zero values
in a single row of X̄ sum to zero. In contrast, Theorem 2
ensures that for every given MMV system and with prob-
ability one, the random reduction yields an SMV with the
same non-zero location set. In essence, the random reduction
maps counterexamples of zero-measure (which may occur) to
zero-measure events (which are unlikely to occur).

4. THE REMBO ALGORITHM

Theorem 2 paves the way to a new class of MMV techniques
based on reduction to an SMV. In this approach, the mea-
surement matrix Y is first transformed into a single vector
y by drawing a realization of a from some absolutely contin-
uous distribution. Then, an SMV problem is solved by (2)
or by any of its relaxations in order to find the support set

Algorithm 1 ReMBo (Reduce MMV and Boost)

Input: Y,A
Control Parameters: K, ǫ, MaxIters, S , P

Output: X̂, Ŝ, flag
1: Set iter= 1
2: Set flag=false
3: while (iter ≤ MaxIters) and (flag is false) do
4: Draw a random vector a of length d according to P
5: y = Ya
6: Solve y = Ax using SMV technique S and denote the

solution x̂
7: Ŝ = I(x̂)

8: if (|Ŝ| ≤ K) and (‖y −Ax̂‖2 ≤ ǫ) then
9: flag=true

10: else
11: flag=flase
12: end if
13: Construct X̂ using Ŝ and (8)-(9)
14: iter=iter+1
15: end while
16: return X̂, Ŝ, flag

S. Finally, the recovery of X̄ is carried out by inverting the
matrix AS as in (8)-(9).

In practice, (2) is not solved directly and sub-optimal
methods are used instead. To further improve the recovery
ability of these algorithms we suggest to repeat the reduction
process with different realizations of a until a sparse solution
is identified. This strategy relies on the following empirical
behavior which we noticed in simulations. Consider two K-
sparse vectors x̄, x̃ having the same non-zero locations but
with different values. Denote by S an SMV technique which
is used to recover x̄, x̃ from the measurement vectors Ax̄,Ax̃
respectively. Empirically, we observed that S may recover
one of the vectors x̄, x̃ while failing to recover the other, even
though their non-zero locations are the same. As far as we
are aware, this behavior was not studied thoroughly yet in
the literature. In fact, Monte-Carlo simulations that are typ-
ically conducted in the evaluation of sub-optimal techniques
may imply a converse conclusion. For example, Candès et.
al. [2] analyze the basis pursuit method (3) when A is a
row subset of the discrete-time Fourier matrix. A footnote
in the simulation section points out that the observed be-
havior seems to be independent of the exact distribution of
which the non-zero entries are drawn from. This remark
was also validated by other papers that conducted similar
experiments. The conjecture that Monte-Carlo simulations
are insensitive to distribution of the non-zero values appears
to be true. Nevertheless, it is beneficial for a given SMV
system to apply S on both measurement vectors Ax̄,Ax̃.
Once the crucial information of the non-zero locations is re-
covered, the final step of inverting AS leads to the correct
solution of both x̄, x̃.

The ReMBo algorithm, outlined in Algorithm 1, makes
use of the reduction method and also capitalizes on the em-
pirical behavior discussed above. In steps 4-7, the MMV sys-
tem is reduced into an SMV and solved using a given SMV
technique S . These steps produce a sub-optimal solution x̂,
which is examined in step 8. If x̂ is not sparse enough or is
not well aligned with the measurements, then the reduction
steps are repeated with another draw of the random vector
a. We refer to these additional iterations as the boosting
step of the algorithm. Theorem 2 ensures that each of the
different SMV systems of step 6 has a sparse solution that
preserves the required support set S with probability one.
The iterations improve the chances to recover S by changing
the non-zero values of the sparse solutions. If the number
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Table 1: Sub-Optimal Techniques

Model Tag Formal Description Type

SMV
BP Basis Pursuit, (3), [1],[2] Convex relaxation
OMP Orthogonal Matching Pursuit, [8] Greedy

MMV

M-BP(ℓ1) (5) with objective ‖Rℓ1(X)‖1, [9] Convex relaxation
M-BP(ℓ∞) (5) with objective ‖Rℓ∞(X)‖1, [4] Convex relaxation
M-OMP MMV version of OMP, [8] Greedy
ReMBo-BP ReMBo with S = BP Convex relaxation
ReMBo-OMP ReMBo with S = OMP Greedy

of iterations exceed the pre-determined parameter MaxIters,
then the algorithm is terminated. The content of the flag

variable indicates whether X̂ represents a valid solution. If
flag=false, then we may solve the MMV system by any other
method. Note that step 8 allows to tune ReMBo to prefer
either feasibility or sparsity according to user preference by
selecting appropriate values for the parameters K, ǫ.

We now compare the behavior of ReMBo with standard
MMV techniques in terms of computational complexity and
recovery rate. Clearly, the complexity of SMV is lower due
to the reduced number of unknowns. The reduction method
itself is no more than one matrix multiplication which in
practice is a negligible portion of the overall run time in
popular techniques. Performance of different algorithms can
also be evaluated by measuring the empirical recovery rate
in a set of random tests [1],[2],[8],[9]. As we detail in the
following section, for some parameter choices a single reduc-
tion iteration achieves an overall recovery rate that is higher
than applying a direct MMV technique. For other parame-
ter selections, a single iteration is not sufficient and boosting
is required to increase the recovery rate of ReMBo beyond
that of a standard MMV. The results indicate that ReMBo-
based techniques are comparably fast even when boosting is
employed.

5. NUMERICAL EXPERIMENTS

5.1 Setup

We choose m = 20, n = 30, d = 5 for the dimensions of (1).
The matrix A contains real-valued i.i.d. Gaussian entries
with zero mean and unit variance. For each 1 ≤ K ≤ 20 we
construct a K-sparse matrix XK by first choosing a support
uniformly at random among the

(

n

K

)

options, and then draw-
ing the non-zero values from the same distribution used for
the entries of A. Next, a given MMV algorithm is executed
in order to recover XK from the measurements AXK . We
compute the empirical recovery rate as the average number
of solutions that were recovered accurately up to machine
precision from 500 repetitions. For ReMBo techniques, we
choose P as an i.i.d. uniform distribution in [−1, 1]d. We
also collected run time data in order to qualitatively com-
pare between the complexity of the tested techniques. The
real-valued setup is chosen to reproduce the simulations of
[8],[9]. However, the results are also valid for complex values.

To simplify the presentation of the results, Table 1 lists
the techniques that are used throughout the experiments.
Short labels are used to denote each of the techniques. The
notation Rℓp

(X) stands for a vector of length n such that
its ith entry is equal to the ℓp norm of the ith row of X.
The MaxIters parameter of ReMBo-based techniques is noted
in brackets, for example ReMBo-BP[1]. A default value of
MaxIters = 5 is used if the brackets are omitted.
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Fig. 1: Comparison of MMV algorithms based on con-
vex relaxations. The ReMBo techniques are in solid
lines. As expected, the recovery curves of ReMBo-BP[1]
and BP coincide.
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Fig. 2: A comparison between M-OMP and ReMBo-
derived methods.

5.2 Results

In Fig. 1 we compare between MMV techniques based on
convex relaxation of (5). For reference we used the same
scale to draw the recovery rate of BP on a single measure-
ment column. It is seen that both M-BP(ℓ1) and M-BP(ℓ∞)
suffer from a decreased recovery rate with respect to BP. In
contrast, the recovery rate of ReMBo-BP improves on BP
due to the boosting effect. In addition, as revealed from
Fig. 4, the average run time of ReMBo-BP is lower than
the run time of both M-BP(ℓ1) and M-BP(ℓ∞). We point
out that the M-BP techniques require the selection of a row
norm. Our reduction method allows to avoid this ambiguous
selection by transforming to an SMV problem.

The OMP is a variant of the greedy matching pursuit [8]
and is immediately extended to M-OMP. The latter is typi-
cally faster than basis-pursuit based methods as revealed in
Fig. 4. A comparison between ReMBo techniques and M-
OMP is plotted in Fig. 2, demonstrating the superior per-
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Fig. 3: The impact of boosting iterations for various
selections of MaxIters.
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Fig. 4: Average run time of various MMV techniques.

formance of ReMBO over the entire range 1 ≤ K ≤ 20.
In particular, in the intermediate range 10 ≤ K ≤ 13
ReMBo-OMP achieves a recovery rate that is approximately
10% higher than M-OMP. In addition, the run time of the
ReMBo-OMP is close to the direct greedy approach as seen
from Fig. 4.

In order to emphasize the impact of iterations, Fig. 3 de-
picts the recovery rate of ReMBo-BP and ReMBo-OMP for
different values of MaxIters. The recovery rate at K = 10
is of special interest since according to Theorem 2 a value
of K ≤ σ(A)/2 is required1 to ensure that the random in-
stances of SMV preserves the set S. For example, a single it-
eration of ReMBo-BP achieves a recovery rate of 54%, while
two and five iterations improve the recovery rate to 74% and
91% respectively. A higher number of iterations results in a
minor improvement conforming with our default selection of
MaxIters = 5. However, the condition of K ≤ 10 is only suf-
ficient and empirical recovery is allowed to some extent even
for K > 10. In this range, repeating the reduction process
more than 5 times can be beneficial. For example, ReMBo-
BP[20] yields a recovery rate of 56% for K = 14 instead of
25% when allowing only MaxIters=5.

In Fig. 5 we compare the recovery rate when choosing
the continuous distribution P as either uniform, Gaussian or
exponential. We repeated this simulation when changing the
distribution of the non-zero entries of XK in the same way.
The encountered behavior strengthens the conjecture that
Monte-Carlo analysis is insensitive to the specific distribu-
tion of the non-zero values. Moreover, it shows that ReMBo
is insensitive to the selection of P . Note that the distri-
bution parameters are not specified in Fig. 5 since they do
not influence the results. In contrast, the boosting stage of
ReMBo capitalizes on the sensitivity of common sub-optimal

1According to [1],[2], a matrix with random entries has a full
column rank and a full Kruskal rank with an overwhelming prob-
ability. In our setup the maximal value of σ(A) is m = 20. Em-
pirically, it was also noticed that rank(Y) = 5 in all generated
measurements.
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Fig. 5: ReMBo-OMP[20] with different selection of (a)
the distribution P , and (b) the distribution of the non-
zero entries of XK .

methods to the specific relation between the non-zero values
of the sparse solution. Clearly, Figs. 3-5 distinguish between
the success recovery of a specific SMV instance and the aver-
age measure of success recovery taken over a comprehensive
set of examples.
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