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ABSTRACT 
Speech codecs are usually equipped with voice activity de-
tection (VAD) algorithm to enable efficient coding of inac-
tive frames and the discontinuous transmission mode (DTX). 
High VAD efficiency for speech in noisy environments is 
often traded off against its robustness for music. This is also 
the case of the VMR-WB codec recently standardized by 
3GPP2. Its VAD fails to detect portions of some critical mu-
sic samples. In this contribution we propose a method to 
improve the performance of the VMR-WB VAD on music 
signals. The idea is to measure the stability of tones in the 
spectral domain by means of per-tone correlation analysis. 
By using this approach, the music detection accuracy is in-
creased to ~99% and the problem of misclassification is 
significantly reduced. The proposed method has been im-
plemented in the G.718 codec being currently standardized 
by the ITU-T. 

1. INTRODUCTION 

Voice activity detection (VAD) has been typically used to 
save bandwidth and computational demand in speech com-
munications by detecting inactive periods. During inactive 
periods, the background noise is only roughly coded and 
transmitted at very low bitrates, usually using discontinuous 
transmission (DTX). At the decoder side, the background 
noise is regenerated by means of a technique called comfort 
noise generation (CNG). An efficient VAD is of particular 
importance in CDMA systems and packet-based communica-
tions. In CDMA systems (e.g. cdmaOne and cdma2000) the 
DTX is not used, and the inactive speech is encoded using 
the lowest available bit rate. An efficient VAD is needed to 
maximize the system capacity and improve the overall per-
formance. In packet-based communications, the packets have 
usually long headers with respect to the frame size of low bit 
rate speech coders. The DTX then allows for significant 
bandwidth savings by reducing the number of packets to be 
transmitted. 

In recent years a new trend emerged in developing 
complex speech and audio coding systems with high trans-
mission efficiency at low bitrates, and high perceptual ren-
dering at high bitrates for both speech and audio inputs. This 
trend can be also observed in the standardization efforts 
within ITU-T. Many high-rate extensions to existing low-
rate standards have been recently recommended or are being 
standardized, such as G.711.1, G.722.1 full-band or G.729.1. 

For these systems, the traditional VAD algorithms usually do 
not provide sufficient accuracy in the detection of audio 
signals and they are being replaced by more generic SAD 
(signal activity detection) algorithms. For example, Appen-
dix III of the G.729B codec, addresses the problem of classi-
fying portions of very long and high-level tonal signals as 
"inactive speech". In the AMR-WB codec, a tonal detector is 
used to detect information tones, vowel sounds and other 
periodic signals. A music detector is also included in the 
SMV vocoder to classify an input signal as music or non-
music, which is then used in the rate-selection mechanism. 

In this contribution we propose a method for improving 
the VMR-WB VAD algorithm so that it can be used as a 
SAD in the G.718 codec. The VMR-WB VAD algorithm is 
highly efficient in coding speech signals with various back-
ground noises, as was shown in 3GPP2 standardization tests. 
However, VMR-WB has been developed mainly for speech 
coding and it fails to detect certain critical music samples, 
e.g. low-pace piano or passages dominated by percussions. 

The paper is organized as follows. In section 2 we 
summarize the VMR-WB VAD algorithm. In section 3 we 
describe our method to improve the VAD performance for 
music signals by means of tonal stability analysis and modi-
fied non-stationarity measure. Finally, in section 4, we pro-
vide some experimental results using the proposed method 
and compare it with some alternatives.  

2. VMR-WB VAD ALGORITHM 

The VMR-WB VAD [1] proceeds in two stages. In the 1st 
stage, the VAD algorithm (Figure 1) makes its decision about 
speech activity by comparing an average SNR per frame to a 
certain threshold, which is a function of long-term SNR. The 
average SNR per frame is calculated using energies in critical 
bands [8]. It is defined as 
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where bmin and bmax are the indices of the minimum and the 
maximum critical band of the useful bandwidth, respec-
tively. E(j) is the average active signal energy in a critical 
band j and N(j) is the estimated noise energy in the same 
critical band. As a result of the 1st stage, called “decision” in 
Figure 1, a flag vf is set to one if signal activity is detected. 

The 2nd stage of the VAD algorithm, called “noise esti-
mation” in Figure 1, serves to decide when to update the 
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estimated noise energy. It is based on a set of parameters, 
independent of the average SNR per frame, and relatively 
insensitive to noise-level variations. Given that the charac-
teristics of background noise evolve slowly, the 2nd stage of 
the VAD is allowed to make more incorrect decisions on 
inactive signal, but it is not allowed to make any incorrect 
decision on active signal.  

By dividing the VAD in two stages, the thresholds of 
activity decision in the 1st stage can be adjusted to a desired 
sensitivity without affecting the robustness of the decisions 
in stage 2. Further, it solves the problem of locking the VAD 
decision in case of a sudden increase of the background 
noise level.  

The following set of four features is used in the 2nd 
stage of the VAD algorithm: 

• signal non-stationarity 
• pitch stability 
• voicing measure (max. normalized correlation) 
• ratio between 2nd order and 16th order linear predic-

tion (LP) residual error energies. 
A detailed description of these features is provided in [2]. 
They are calculated on a frame-by-frame basis and, if none of 
them exceeds its threshold, the noise energy per critical band 
N(j) is updated. 

Of particular interest is the signal non-stationarity pa-
rameter, which is defined as: 
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where Ē(i) is the long-term average of the active signal en-
ergy. The signal non-stationarity feature triggers most active 
speech decisions. This is shown in Table 1 where the per-
centage of active frames, successfully detected by each of the 
parameters, is presented. 

The results in Table 1 were calculated using several mu-
sic samples at 16 kHz, each having a length of 20s. They 
were selected from various music genres and categorized as 
classical (incl. jazz, blues, etc.) and rock&pop (incl. dance, 
disco, hip-hop, etc.) and then sub-divided as vocal and in-
strumental. For each of the four categories, one long file of 
approximately 7 min. has been created by concatenating sev-
eral samples together. There was a pause of about 2-3s be-
tween each two consecutive samples. All recordings were 
manually labelled with active and inactive signal marks. 
From Table 1 we see that signal non-stationarity successfully 
triggered 85-95% active music decisions, whereas the other 
features only 27-73%. In addition, all features except non-
stationarity are dependent on the music genre. 
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Figure 1 - Schematic description of the two-stage VAD algorithm in 

the VMR-WB and G.718 codecs 

Table 1 - Percentage of active decisions triggered by individual 
features in the 2nd stage of the VMR-WB VAD algorithm. 

content signal non-
stationarity 

Table 2 shows the percentage of correct decisions of the 
VAD algorithm in each stage when all features are combined 
together. The first and the second column correspond to the 
1st stage and the other two columns to the 2nd stage. It can be 
seen that, for noisy speech, the VAD’s detection accuracy in 
the 1st stage is more than 98%. For classical instrumental 
music it is only 92% and for rock&pop instrumental music 
even 91%. This is caused by an incorrect detection of active 
frames in the 2nd stage of the VAD (third column). Incorrectly 
detected active frames are called “Type II” errors. From Ta-
ble 2 we see that the percentage of Type II errors (the com-
plement to 100%) in the 2nd stage is approximately the same 
for speech and for music. While for noisy speech, the Type II 
errors occur in low-energy regions where speech is generally 
buried in noise and the error has not a big impact, for music 
the Type II errors occur often in perceptually important seg-
ments with significant energy. In music, a Type II error basi-
cally means that an active signal has been erroneously de-
clared as inactive, and that background noise energy has been 
updated with active signal energy. Subsequently, the first-
stage VAD often stops detecting active signal and hangs in a 
wrong state for several frames until the noise energy is cor-
rectly re-updated. In systems with DTX operation, the signal 

pitch sta-
bility voicing energy 

ratio 
clean speech 99.51 50.24 46.45 75.67 
rock & pop - instrum. 86.53 47.14 38.44 31.20 
rock & pop - vocal 95.05 57.56 32.13 47.87 
classical - instrumental 85.06 70.27 31.43 41.46 
classical - vocal 89.22 67.43 27.81 72.54 
 

Table 2 - Percentage of correct decisions in the 1st and 2nd stage of 
the VMR-WB VAD algorithm. 

content 1st stage 2nd stage 
active inactive active inactive

clean speech 98.97 99.98 100.00 61.26 
speech + office noise 98.03 99.24 99.33 41.26 
speech + car noise 99.46 99.85 99.87 73.21 
speech + street noise 99.80 99.47 99.96 71.97 
rock & pop - instrumental 90.67 81.09 98.82 80.07 
rock & pop - vocal 97.02 100.00 99.28 78.23 
classical - instrumental 92.03 99.75 98.18 87.36 
classical - vocal 95.27 100.00 98.96 90.88 
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is encoded using a CNG during this period which provides a 
very poor quality for music signals. 

In the second and fourth column of Table 2 we see the 
percentage of inactive frames that were correctly detected. 
The incorrectly detected inactive frames are called Type I 
errors. They are not critical to the quality of synthesized sig-
nal, but should be kept as low as possible as they generally 
increase the average data rate of the codec. The Type I errors 
in the 2nd stage reduce the update rate of the background 
noise energy which affects the accuracy of the decision in the 
1st stage. The Type I errors in the 1st stage force the codec to 
use more bits for encoding which translates to higher bit rate. 

3. THE PROPOSED FEATURES 

Our goal was to enhance the performance of VMR-WB by 
eliminating Type II errors on music signals without signifi-
cantly affecting the VAD decision efficiency for noisy 
speech. When analyzing the Type II errors of the VMR-WB 
VAD algorithm on music signals, we observed that the fail-
ures in the second-stage mostly happened: 

(a) after certain attacks of signal energy (beats of 
drums, cymbals or piano); 

(b) in a high-frequency energetic signal, such as 
handclapping or castanets; 

(c) during low-pace piano concerts between two 
consecutive key strokes. 

It is not possible to solve these failures by only adjusting the 
parameters and the thresholds of the VMR-WB VAD. This 
would lead to a dramatic increase of Type I errors and, con-
sequently, to much lower efficiency of the first-stage VAD. 
Instead, we propose to solve problems (a) and (b) by modify-
ing the non-stationarity feature of the VMR-WB VAD, and 
problem (c) by adding a new feature called “tonal stability”. 
 

3.1. Modified non-stationarity 
Most of the occurrences of problems (a) and (b), described 
above, coincide with non-stationarity failures. By analysing 
the behaviour of this feature, it was found that it failed 
mostly when a sharp energy attack in a signal was followed 
by a slow energy decrease. From Equation (1) we see that 
non-stationarity depends on a long-term average of the active 
signal energy. The long-term average is given by 
 ( ) ( ) (1 ) ( )E i E i E iα α= + − ,  for i=bmin,..,bmax. (3) 
The forgetting factor α = 0.024Et - 0.235 is dependent on a 
total frame energy, Et, and is limited by 0.5<α < 0.99. 

To overcome the failures, a new long-term average 
( )E i′  is established and calculated in the same way as in 

Equation 2. Unlike (2), its updating is reset during energy 
attacks, by setting α = 0. The energy attacks are detected in 
the following way. First, for critical bands 10,..,bmax, which 
corresponds to the range from 1270 Hz to the half of the 
sampling frequency, ratios between energies are calculated as 
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Thus, only energy bins exceeding the 10th critical band are 
considered in order to increase the discrimination capabilities 

of energy attacks. The index E-1 refers to the energies of the 
previous frame. A weighted sum of the ratios is then calcu-
lated as follows 
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which is subject to a threshold tatt = 5.0. The threshold has 
been found experimentally on a large database of speech and 
music signals. If the threshold is exceeded, an energy attack 
is detected, and the updating of ( )E i′  is reset. The modified 
non-stationarity is then evaluated in the same way as the 
original non-stationarity (see Equation (2)), but using the 
long-term average of Equation (3). Since the forgetting factor 
α is reset in every energy attack, the modified non-
stationarity triggers active decisions in a few frames follow-
ing the attack. This replaces exactly the failures of the origi-
nal non-stationarity and the problem is eliminated. 
 

3.2. Tonal stability 
The tonal stability capitalizes on the harmonic stationary 
structure of music signals and stems from ideas about signal 
tonality in [3-7]. In [3], spectral flux (SF) parameter is used 
to measure a spectral difference between the current and the 
previous frame. This idea is used also in the proposed 
method and further expanded to include multiple past frames. 
Hawley [4] proposes a music detector based on harmonic 
entropy measures and in [5], spectral flatness measure (SFM) 
is used, which is an estimation of the tone-like quality of a 
spectrum. The proposed method analyzes peaks of the spec-
trum to create an image about signal tonality. Then, an en-
tropy measure is applied to quantify the variance of the im-
age. This concept is also seen in [6], where spectral centroid 
(SC) is introduced to measure the spectral shape and “bright-
ness” of the spectrum. Finally, in a recent work of Hossein-
zadeh and Sridhar [7], a new set of features is developed for 
speaker recognition. These features are used in conjunction 
with the classical features characterizing the vocal tract. 
Among them, there is spectral crest factor (SCF), which pro-
vides a measure for quantifying the tonality of the signal. A 
detailed description of the proposed method is given below. 

In the spectrum of an audio signal there are typically 
several peaks. For harmonic music signal these peaks repre-
sent tones. Musical tones usually remain stable (position and 
amplitude) for several frames whereas for noise signals they 
tend to diminish quite rapidly. To take an advantage of this 
phenomenon we first need to detect the tones in the spec-
trum. Let the spectrum of the current frame be denoted as 
S(k), where k=0,1,..,N-1 and the vector of indices correspond-
ing to its spectral minima as ml, l=0,1,..,L-1. We calculate a 
spectral floor, which is a piece-wise linear function connect-
ing all spectral minima. Each piece between two consecutive 
minima ml and ml+1 is defined as 
 ( ) .( )fl lS k a k m b= − + , for  (6) 1,.., 1l lk m m += −

where a is the slope of the line and b=S(ml). The slope is 
calculated as 

 1

1

( ) (l

l l

S m S m
a

m m
+

+

−
=

−
)l . (7) 

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



Before the first minimum and after the last minimum, the 
spectral floor is identical to the original spectrum, i.e. 

  (8) 
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The spectral floor is then subtracted from the orig. spectrum 
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and the residual spectrum is correlated piece-by-piece with 
the residual spectrum of the previous frame, i.e. 
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where l is the piece number, Sres (k) is the residual spectrum 
of the current frame and Sp,res (k) is the residual spectrum of 
the previous frame. A “correlation map” is then created by 
concatenating Cl of all pieces, i.e. 
 ,  for  and ( ) lC k C= 0,.., 1l L= − )1:l lk m m +∈< . (11) 
To take a decision about tonal stability, a long-term (LT) cor-
relation map is calculated as 

( ) ( ) (1 ) ( )LT p,LTC k C k C kα α= + − ,  for , (12) 0,.., 1k N= −

k

where Cp,LT (k) is the LT correlation map calculated in the 
previous frame and α=0.9 is the filtering factor. The algo-
rithm is started with Cp,LT (k)=0, k=0,..,N-1. Note that the LT 
correlation map is updated in every frame on a bin-by-bin 
basis. Finally, the whole LT correlation map is summed to-
gether to obtain a quantitative measure of tonal stability, i.e. 
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The result is then compared to an adaptive threshold, which 
is limited by 49 and 60, and initialized to 56. These values 
have been found empirically on a large database of speech 
and music signals. If tonal stability is detected (the threshold 
is exceeded) the threshold is decreased by 0.2, otherwise it is 
increased by 0.2. By decreasing the threshold, the probability 
of declaring a frame as active is increased and vice-versa. 
Such behaviour is useful at the end of active signal periods 
since it introduces the effect of hangover. The main steps of 
the tonal stability calculation are illustrated in Figure 2. The 
spectrum in this figure was calculated on active segment of 
string music, using a 256-point FFT analysis. 

Figure 2 - Tonal stability calculation 

4. EXPERIMENTAL RESULTS 

The proposed features were tested on the VMR-WB VAD 
algorithm and their performance compared with several al-
ternatives. They were integrated in the 2nd stage of the VMR-
VAD and their thresholds optimized. Each threshold was set 
to a value which results in the elimination (if possible) of 
Type II errors in the 1st stage of the VAD and, the lowest rate 
of Type II errors in the 2nd stage of the VAD. 
The same testing signals as in section 2 were used in the per-
formance evaluation. For all tested features, performance on 
noisy speech was recorded only for office noise as it is one 
the most difficult noises with respect to VAD decision. The 
results are summarized in Figure 3. 

In Figure 3 above, we see a percentage of correctly de-
tected active frames in both, the 1st stage and the 2nd stage of 
the “improved” VMR-WB VAD. Note that only one feature 
at time was tested, in order to obtain comparable results. 
From the graph it is seen that the best detection accuracy is 
achieved with the tonal stability both, in stage I and stage II. 
The other features are less efficient, especially for instrumen-
tal music. The tonal stability improves the percentage of cor-
rectly detected music frames with respect to VMR-WB VAD 
in the following way: 

 

rock&pop instrumental from 90.67 to 97.30, 
rock&pop vocal  from 97.02 to 98.24, 
classical instrumental  from 92.03 to 97.97, 
classical vocal  from 95.27 to 97.67. 
 

The reference values are taken from Table 2 (1st stage). 
In Figure 3 below wee see the results for inactive signal 

detection. In the 1st stage, the percentage of correctly detected 
inactive frames is close to 100% for the tonal stability, the 
modified non-stationarity and the spectral flux. Further, for 
these features, the detection accuracy does not depend on 
music genre. For the other features, the accuracy is low 
mainly for rock&pop instrumental music. In the 2nd stage of 
the VAD, the detection accuracy is more or less the same for 
all features, with the exception of spectral centroid, which 
scores low for classical instrumental music. Also, the tonal 
stability has a slightly lower performance for classical music. 
However, an important result is that, for speech signal cor-
rupted by office noise, the tonal stability does not increase 
the rate of Type I errors in the 2nd stage by more than 5% 
when compared to the original VAD. This is also verified and 
confirmed for the other types of noise, used in Table 2.  
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Figure 3 – Comparison of different features implemented in the VMR-WB VAD algorithm: 
active decisions (above), inactive decisions (below). 

The performance of the VAD is further improved by 
combining the tonal stability with other feature(s). The same 
framework and the same signals as in the first experiment are 
used. The combination of the tonal stability with the spectral 
flux increases the detection accuracy of active music signals 
in the 1st stage by 0.1-0.4%. On the other side, a conjunction 
of the tonal stability with the modified non-stationarity in-
creases the detection accuracy of rock&pop instrumental 
signal by 1.72% and the classical instrumental signal by 
0.99%. This is a significant progress which is explained by 
the fact that for these types of music, the two features are 
complementary. The tonal stability improves the detection of 
harmonic parts of the signal whereas the modified non-
stationarity improves the detection of percussion-dominated 
passages. An incorporation of other features does not in-
crease substantially the detection accuracy. At the same time 
the percentage of correctly detected inactive frames is basi-
cally unchanged when the tonal stability is combined with 
the modified non-stationarity. It was also verified that a com-
bination of three features does not lead to another improve-
ment of VAD performance and would only result in a wast-
ing of computational resources. 

5. CONCLUSION 

In this paper we consider an improvement to the VMR-WB 
VAD algorithm for the detection of music signals. Two fea-
tures are proposed for the 2nd stage of the VAD algorithm, 
the tonal stability and the modified non-stationarity. The 
tonal stability capitalizes on a harmonic structure of some 
critical music samples and measures its long-term invari-
ance. On the other side, the modified non-stationarity ex-
ploits information about energy attacks of certain percus-
sion-dominated signals to complement the original non-
stationarity feature.  

The proposed features were compared with several al-
ternatives and tested on four types of music and noisy 
speech. It was shown that, with the proposed method, the 

percentage of active music frames, successfully detected by 
the VAD algorithm in the 1st stage, can be significantly in-
creased. For vocal music, it is by ~1-2% and, for instrumen-
tal music, by ~6-7%. Compared with the original VMR-WB 
VAD, the false detection of active music is basically elimi-
nated, whereas the detection accuracy of inactive signal is 
decreased only by 5% in the 2nd stage of the VAD. 

The proposed method was implemented in a SAD algo-
rithm of the G.718 codec. 
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