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ABSTRACT

Compressed sensing is an attractive compression scheme due to its
universality and lack of complexity on the sensor side. In this pa-
per we present a study on compressed sensing of real, non-sparse,
audio signals. We investigate the performance of different bases
and reconstruction algorithms. We then explore the performance
of multi-sensor compressed sensing of audio signals and present
a novel scheme to provide improved performance over standard re-
construction algorithms. We then present simulations and measured
results of a new algorithm to perform efficient detection and estima-
tion in a sensor network that is used to track the location of a sub-
ject wearing a tracking device, which periodically transmits a very
sparse audio signal. We show that our algorithm can dramatically
reduce the number of transmissions in such a sensor network.

1. INTRODUCTION

Compressed Sensing (CS) [1] [2] seeks to represent a signal using a
number of linear, non-adaptive measurements. Usually the number
of measurements is much lower than the number of samples needed
if the signal is sampled at the Nyquist rate, thus providing the bene-
fits of reduced storage space and transmission bandwidth due to the
phenomenal compression achieved.

CS requires that the signal is very sparse in some basis—in the
sense that it is a linear combination of a small number of the ba-
sis functions—in order to correctly reconstruct the original signal.
However, the CS measurements made are usually not dependent on
the basis used in reconstruction, and thus the measurement process
is universal as it does not need to change as different types of sig-
nals are sensed.

The majority of the literature on CS has been concerned with
very sparse signals, and very few results have been presented that
explore the performance of CS when used with signals that are not
truly sparse. There are even fewer studies on the applicability of CS
to audio signals, particulary on speech, music or naturally-occurring
signals such as animal calls and environmental sounds. All of these
signals are usually not sparse and have a large number of non-zero
components in whatever basis might be used in reconstruction.

In this paper we present a study of the performance of CS for
a variety of audio signals. We illustrate the differences in per-
formance depending on the basis and the reconstruction algorithm
used.

Due to its universality and lack of complexity on the sensor
side, CS is an attractive compression scheme for multi-sensor sys-
tems. This leads us to investigate the performance of a multi-sensor
CS system of real audio signals using standard reconstruction al-
gorithms, and propose a novel scheme to provide improved perfor-
mance.

We also consider a sensor network that is used to track the lo-
cation of a subject wearing a tracking device that periodically trans-
mits an audio signal. Here the goal is detection and estimation of
the audio signal, which can be done with far fewer measurements
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than that required for reconstruction. We develop algorithms to per-
form efficient detection and estimation of these truly-sparse audio
signals in a multi-sensor system.

2. COMPRESSED SENSING

2.1 Measurements

We sample the audio signal x(t) at the Nyquist rate and process it
in blocks of N samples. Each block is then an N × 1 vector xk,
where k represents the time dependence. The sample vector xk can
be represented as

xk = ΨXk, (1)

where Ψ is an N ×N matrix whose columns are the similarly sam-
pled basis functions Ψi(t), and Xk is the vector that chooses the
linear combinations of the basis functions. Xk can be thought of as
xk in the domain of Ψ, and it is Xk that is required to be sparse for
CS to perform well.

At the sensor, we take M non-adaptive linear measurements of
xk, where M � N, resulting in the M ×1 vector yk. This measure-
ment process can be written as

yk = Φkxk, (2)

whereΦk is an M×N matrix representing the measurement process.
For the compressed sensing to work, Φk and Ψ must be incoherent.
In order to provide incoherence that is independent of the basis used
for reconstruction, a matrix with elements chosen in some random
manner is generally used.

Note that it is not necessary to sample x(t) at the Nyquist rate
and then take the discrete measurements. By the use of suitable
hardware, it is possible to go straight to the required measurements
[3] [4] [5].

2.2 Reconstruction

Once yk has been measured, it is transmitted in some fashion to
a processor, where it is reconstructed. Reconstruction of a com-
pressed sensed signal involves trying to recover the sparse vector
Xk. There are two main reconstruction algorithms used: basis pur-
suit (BP) [1] [6] and orthogonal matching pursuit (OMP) [7] [8].

Let X̂k be the recovered signal after reconstruction. BP seeks to
find a solution to the following equation

X̂k = argmin‖Xk‖1 s.t. yk =ΦkΨXk, (3)

where ‖ · ‖1 is the `1 norm. In general, the `n norm is defined as

‖a‖n =

(

∑
j

|a j|
n

)
1
n

. (4)

Thus BP attempts to find the solution to (3) with the smallest `1

norm. In doing this, it provides a coefficient for each of the basis
functions of Ψ.
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Figure 1: SDR values for reconstructions of a variety of audio signals using basis pursuit and the DCT (solid line) or the DWT (dashed line)
for various values of M/N.
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Figure 2: SDR values for reconstructions of a variety of audio signals using basis pursuit (solid line) or orthogonal matching pursuit (dashed
line) for various values of M/N.

OMP successively approximates X̂k by finding which basis
function would contribute the most to

yk ≈ ΦkΨX̂k. (5)

It then removes the contribution of this component, orthogonalises
the residual, and repeats the process.

Thus BP can be thought of as simultaneously deciding on all

of the components of X̂k, whereas OMP does this on a component-
by-component basis. BP also has the advantage of being able to
provide a solution that is within a given || · ||2 distance, which can
be useful for noisy signals .

Nothing comes for free however, and BP is generally more
computationally-complex than OMP, but it generally performs bet-
ter, particularly for signals that are not strictly sparse.

Obviously X̂k depends on the choice of the basis Ψ. One of the
advantages of CS is that the sensing is the same regardless of the

basis used for reconstruction, so that given yk, X̂1,k will be recov-
ered ifΨ1 is used in reconstruction while the use ofΨ2 would result
in X̂2,k. From (1), X̂1,k and X̂2,k will give x̂1,k and x̂2,k respectively,
which could be very different approximations to the original signal
xk.

To illustrate this, Figure 1 presents the signal-to-distortion ra-
tio (SDR) of the recovered signal for various example audio signals
for two different bases: the discrete cosine transform (DCT) and a
discrete wavelet transform (DWT) with Symmlet filters of order 8.
These bases were chosen as they are both orthonormal, and suit-
able for a variety of audio signals [9]. The signals are the same as
those studied in [9], they are sampled at 8kHz, and about 8 seconds
in length. We used a block length N of 128, although our experi-
ence shows that the SDR of the reconstructed signals is relatively
unaffected by the choice of N. The sensing was done using random
Gaussian matricies and reconstructed using BP. The SDR is a mea-
sure of the degradation due to CS, and is calculated in the following

manner.

SDR =
∑

K−1
k=0

‖xk‖2

∑
K−1
k=0

‖xk − x̂k‖2

. (6)

The M/N on the x-axes of Figure 1 can be thought of as a coding
rate, that is, we are representing the full-rate signal with M/N of the
number of full-rate samples.

It is clear from Figure 1 that the DCT performs better than the
DWT for all but the impulsive signal, which is used as an example
of sounds such as sticks breaking and handclaps, sounds that are
very time-limited, and may contain many frequencies. The birdcall,
in Figure 1(c) is a particularly good example of the importance of
using the right basis, as the performance when using the DCT is far
superior to that of the DWT.

Figure 2 presents the SDR values of the same signals when re-
constructed with BP or OMP. The best performing basis was used
for each signal (the DWT for the impulsive signal, and the DCT for
the others). With truly sparse signals there is very little difference
between the two algorithms, but it is obvious in Figure 2 that BP
outperforms OMP for these non-sparse signals. Again, this is due
to the fact that BP seeks to estimate the basis components simul-
taneously, whereas OMP does this in a component-by-component
fashion.

3. MULTIPLE SENSORS AUDIO MODEL

Its universality and the fact that very little processing is done on
the sensor side and that a greatly reduced number of measurements
are required make CS an attractive candidate for use in a sensor
network where processing power and transmission bandwidth are
usually limited. To this end, we now consider a sensing network of
L sensors (microphones) around a sound source.
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Figure 3: Example set up of an audio four-sensor system, z(t) is
the original signal at its source, xl(t) the signal received at the l-th
sensor, and dl the corresponding path length.

Assuming the sound source is omni-directional and that there
are no reflections, the signal received at the l-th sensor will just be
a delayed and scaled version of the original signal z(t) at the source

xl(t) = αlz(t − τl), (7)

where αl and τl are the attenuation and delay at the l-th sensor,
respectively. Such a model fits the second joint sparsity model
(JSM-2) of [10]. Figure 3 shows an example set-up with four micro-
phones. The delay at the l-th sensor is given by τl = dl/c, where
dl is the distance between the source and the l-th sensor, and c is the
speed of sound (equal to 344m/s at 21◦C). Assuming a point source

model, the attenuation at the l-th sensor is given by αl = 1/4πd 2
l .

4. CASE STUDY I: RECONSTRUCTION OF REAL,
NON-SPARSE AUDIO SIGNALS

4.1 System Architecture

Using the model of Section 3 we investigated the performance of
multi-sensor CS of audio signals. We initially used simultaneous
orthogonal matching pursuit (SOMP) [10] [11], which is of course
based on OMP, and seeks to recover z(t) using M measurements
of each of xl(t), l = 1,2, . . . ,L. The idea is to exploit the common
structure of the signals at each receiver, and much improved perfor-
mance can be achieved for very sparse signals.

Unfortunately we found no such improvement for our audio
signals, which we surmise is again due to their lack of true spar-
sity. We found no similar multi-sensor scheme based on BP, so we
investigated using a simple scheme to reconstruct the L signals in-
dividually using BP and then re-combine them. We call this scheme
MS-BP.

Let x̂l denote the signal from the l-th sensor recovered using
BP. Note that there is no time index here as we have concatenated all
the blocks of interest into one large vector. We can easily estimate
the relative delays between each pair of signals by correlating them
over a range of delays, and selecting the delay that maximizes the
correlation. Having calculated the relative delays, it is then a simple
process of comparisons to determine which sensor is closest to the

sound source and therefore has the minimum delay. We will call
this signal x̂l1 .

Let x̂′l denote a version of x̂l that has been time-aligned with x̂l1
and truncated to the minimum common length of all L signals. We
can now calculate the final estimate in MS-BP as

x̂ =
1

L

[

x̂′l1 + ∑
l 6=l1

∥

∥x̂′l1

∥

∥

2
∥

∥x̂′l

∥

∥

2

x̂′l

]

, (8)

which is essentially the mean of the x̂l’s once their relative delays
and attenuations have been accounted for.

4.2 Simulation Results

In Figure 4 we present some results of MS-BP compared with
SOMP for the audio signals we considered in Section 2.2. For
comparison purposes, we have also included the BP reconstruction
of just the closest sensor. We used a four-sensor system with the
sound source off-center, N = 128, and with the best basis for each
signal. MS-BP only estimates the relative delays to the nearest in-
teger number of samples. Also, a real system would have different
noise appearing at each sensor, but as we are investigating ideal per-
formance we did not take noise into consideration.

There is a clear performance improvement in MS-BP over
SOMP, which again is due to the fact that we are dealing with real
signals that are not truly sparse. In particular, SOMP performs very
poorly for the impulsive signal in Figure 4(d). This is because the
impulsive signal is best reconstructed with the DWT which is a very
time limited basis, and the size of delays commonly experienced
with audio signals is hard for the SOMP algorithm to deal with. As
MS-BP reconstructs the signals from each sensor individually and
time-aligns them before recombining them it can perform similarly
with signals best represented by DWT or the DCT. Note that the im-
pulsive signal represents an important class of signals, as it would
be a signal frequently encountered in a multi-sensor system trying
to provide intrusion detection.

There is also an improvement over the reconstruction of just the
closest sensor, which is intuitively satisfying, but note that MS-BP
and SOMP take L times as many measurements as the single sen-
sor result. Thus although it requires the most computation, MS-BP
performs the best, can cover a wider area, has built-in redundancy,
and with the reconstruction of the L signals and their relative delays,
location detection is also possible.

5. CASE STUDY II: DETECTION AND ESTIMATION
OF TRULY-SPARSE AUDIO SIGNALS

5.1 System Architecture

We consider a sensor network that is used to track the location of a
subject wearing a tracking device that periodically transmits an au-
dio signal. The sensor network would be arranged in some cell-like
structure in an outdoor setting, or else the cells could be rooms of
a large building similar to the system considered in [12]. Each cell
is modelled as in Section 3. We assume that each sensor has very
limited computational capability, and simply transmits its readings
to a data fusion centre (DFC). Some initial results of such a system
were presented in [13]

As we wish to use CS detection algorithms in the DFC to min-
imise the number of required transmissions, our audio signal must
be very sparse, and our system uses short pulses of a single fre-
quency. This also ensures that the signals appearing at each sensor
are jointly sparse, allowing us to use the incoherent detection and
estimation algorithm (IDEA) [14] in the DFC to detect the presence
of a signal. This allows detection and estimation to be performed
with significantly fewer measurements than reconstruction requires.

As IDEA was designed for a single sensor, we had to develop
a multi-sensor version of IDEA which we call MS-IDEA. This in-
volved adapting it to use SOMP rather than OMP. This allows for
intra-signal compression without intra-sensor communication.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



M/N

S
D

R
(d

B
)

(a) Speech

M/N

(b) Music

M/N

(c) Birdcall

M/N

(d) Impulsive

0.1 0.2 0.3 0.4 0.50.1 0.2 0.3 0.4 0.50.1 0.2 0.3 0.4 0.50.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

Figure 4: SDR values for reconstructions of a variety of audio signals recorded by a four-sensor system for various values of M/N. The
solid line is the MS-BP, the dashed line is SOMP and the dotted line is the BP reconstruction of an individual signal.

Detection in MS-IDEA is performed by testing to see if the
highest component after the first iteration of SOMP exceeds a given
threshold. Thus the detection process is very computationally effi-
cient, only requiring one iteration of SOMP. In the one component
case—as we consider here—estimation in MS-IDEA just involves
selecting the index of the component with the highest value after
the first pass of SOMP, another very efficient procedure. Note that,
as will be shown in the following section, considerably more mea-
surements are required by the estimation process than the detection
process to obtain a similar level of performance.

One can thus envisage a scenario where each cell operates in
two different modes. A detection mode, where a minimal number of
measurements are transmitted to the DFC. Once a subject has been
detected in a particular cell, the DFC can instruct the cell to switch
to estimation mode, where more measurements are transmitted to
the DFC, enabling estimation of the target.

5.2 Simulation Results

From the N samples taken at the Nyquist rate (16kHz) at each sensor
node, M are randomly selected and transmitted to the DFC. Thus
Φ is formed by randomly selecting M rows of the N ×N identity
matrix. Note that with special hardware this could be done in a
single process known as Random Sampling [5].

The DFC then uses these LM samples to detect whether or not
there is a desired signal in the cell using our MS-IDEA, and if so,
then estimate it. The sparsity basis matrix Ψ was an orthonormal
inverse FFT matrix.

Figure 5(a) & (b) show the results of a simulation of the de-
tection and estimation performance for a 10× 10 metre cell. We
simulated the location of the subject on a uniform grid throughout
the cell and then calcuated the mean probabilities of detection and
estimation over the whole cell.

Curves are given for 1, 2 and 4 sensor nodes at a signal-to-
noise ratio (SNR) of 40dB, and it is evident that increasing the
number of sensors decreases the number of samples—and there-
fore transmissions—required per sensor node. For instance, with 4

sensors and a probability of error less than 10−2, only 3 samples
are required for detection and 7 for estimation. As N = 128, this is
equivalent to compressions of 98% and 95%, respectively. Note that
this requires extremely little computation on the part of the sensor
node.

5.3 Measured Results

Our experimental set-up consisted of two microphones five metres
apart and a sound source between them. Pulses of different frequen-
cies were played and recorded at a sampling frequency of 16kHz at
each microphone. The sound source was placed at various points

between the microphones. The quantities Φ, Ψ and N were the
same as in Section 5.2.

We also simulated this configuration, but note that the experi-
ment was performed in a highly-reflective 6×3 metre room and thus
there was significant reveberation, which is not taken into account
in the simulation. Nevertheless, the results in Figure 5(c)-(f) show
that there is good agreement between the simulated and measured
results.

The measured results are particularly encouraging as they indi-
cate that MS-IDEA is very suitable for indoor use and that reverber-
ation caused by walls, floors and ceilings does not degrade perfor-
mance significantly. In fact, the reverberation helps to improve the
SNR seen at each sensor; only two samples from both sensor nodes

provide a probability of detection error of less than 10−2 and one

more sample reduces this to less than 10−3.

6. CONCLUSIONS

In this paper we presented a study on the best bases and reconstruc-
tion algorithms for compressed sensing (CS) of real, non-sparse, au-
dio signals. We found that basis pursuit reconstruction algorithms
out-perform orthogonal matching pursuit algorithms, due to the lack
of true sparsity in real audio signals. The choice of basis in re-
construction depends on the signals in question, but this is not of
concern for CS due to its universality. We also investigated the per-
formance of a multi-sensor CS system for audio signals, and pre-
sented a simple scheme MS-BP to provide improved performance
over standard algorithms for a wide range of audio signals, and also
provide the possibility of location detection. Through simulations
and measurements, we also showed that our algorithm MS-IDEA
can be used in a detection and estimation audio sensor network to
dramatically reduce the number of transmissions to the DFC. These
algorithms require only minimal processing on the sensor side, and
only moderate computation in the DFC.
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