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ABSTRACT

This paper deals with fast calculation of cross-ambiguity
functions. The approach that we develop is based on Gauss-
Legendre quadrature associated with Fermat Number Trans-
form. For fixed number of quadrature nodes, these nodes are
approximated by their closest neighbors on a regular sam-
pling grid. This enables Gauss quadrature good approxima-
tion while preserving the convolution structure of the grid
quantized quadrature. The interest of preserving the convo-
lution structure of the cross ambiguity terms in the corre-
sponding discretized problem lies in the possibility of using
fast transform Fourier-like algorithms. In a digital processing
context, Number Theoretic Transforms (NTT) in finite fields
of order a Fermat number are known to be particularly well
suited to achieve convolution at very low computational cost.
The contribution of this paper lies in the association of both
powerful concepts of Gauss quadrature and NTT to realize
fast convolution, and in particular fast cross-ambiguity cal-
culation. Simulations are carried out to illustrate calculation
of a few standard radar waveforms ambiguity functions.

1. INTRODUCTION

Convolution is probably the most standard operator in signal
processing and Fast Fourier Transform (FFT) probably the
most famous digital signal processing algorithm, partly be-
cause it enables fast convolution computations. On the other
hand, cross-ambiguity calculations is a time frequency rep-
resentation of much importance in applications such as radar
[1], the expression of which can be seen as a set of convolu-
tions; Letting r(¢) denote an observed signal and u(r) a ref-
erence waveform, the cross ambiguity function, as defined in
[1, 2, 3, 4], is given by

o

2(t,f) = / () (i — ) exp(j2nfr)d, (1)

—oo

where T and f are the time delay and frequency parameters
respectively. Clearly, for fixed f, T — X (7, f) is a convolu-
tion operation. More precisely, x(7,f) can be seen as the
output at time T of r(t) demodulated at frequency f and
passed into the match filter associated with waveform u(z).
In particular, when r(7) = u(r), Eq. (1) is called the ambigu-
ity function of the waveform u(t).

The ambiguity function plays an important role in radar
detection by supplying information about the radar waveform
time and frequency resolution capability and in studying per-
formance of targets distance and speed estimators, since the

Cramer-Rao bound for these parameters can be derived from
the ambiguity function [1].

The cross-ambiguity between an echoed radar signal and
the emitted waveform u(¢) shows attenuated and Doppler-
and-delay shifted versions of the ambiguity function of u(t)
that represent illuminated targets contributions. Of course,
for a given radar waveform one may derive specific fast al-
gorithms for targets detection and parameters estimation (see
for instance [5] for the case of linear chirp waveforms). But,
working with x(7,f) can be seen as a general way to per-
form this task for any kind of waveform. In addition, work-
ing with function ¥ (7, f) enables recovery of possibly very
closely located sources in the time-frequency domain [6].

The main drawback in using (7, f) in a real time pro-
cessing context is that its calculation requires high compu-
tational effort. Then FFT based algorithms have been pro-
posed to calculate precise or decimated versions of the am-
biguity function on a regular sampling grid (see [7] and ref-
erence therein). All these approaches for calculating cross-
ambiguity functions start from a discretized version of the
convolution equation. In other words, they consider a Rie-
mann sum approximation of the convolution equation.

In this paper, we do not address convolutions calcula-
tion directly through regular sampling. Indeed, standard
Riemann integral approximations or more general Newton-
Cotes quadrature formulas calculate integrals through reg-
ular sampling, while more efficient Gauss techniques lead
to quadrature formulas that are calculated from irregularly
spaced nodes [8, 9]; For a fixed number of nodes, Gauss
formula yield much lower integral approximation error than
their Newton counterparts.

However, irregular sampling does not preserve convolu-
tional structure of the initial integral expression. To cope
with this drawback we consider approximate Gauss nodes,
chosen as closest neighbours of the Gauss nodes number on
a regular sampling grid. In order to ensure little error result-
ing from this quantization, the grid has more points than the
number of nodes. Quadrature weights are updated accord-
ingly. In this new representation, x(7,f) is approximated
as a weighted, regularly sampled quadrature expression with
many zero terms. This enables using FFT-like convolution
algorithms if working from direct discretization of convolu-
tion integral.

With a view to digital processors implementation, we add
a further step for complexity reduction of the algorithm. This
is achieved by replacing standard FFT by Number Theoretic
Transforms (NTT) that are discrete Fourier like operations
that transform cyclic convolution operations on finite rings of
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integers into multiplications. In particular, it has been shown
in [10] that the case of rings of integers modulo a Fermat
number, that is, a number of the form 2?2 +1(t € N), is of
particular interest. Then, this transform is called a Fermat
Number Transform (FNT). Using FNT for calculating convo-
lutions leads to operations on a finite ring of integers, avoid-
ing thus floating point calculations. In addition, the number
of operations is small and multiplications simply amount to
registers shifts.

The rest of this paper is organized as follows: in section 2
we recall basics about Gauss quadrature and Legendre poly-
nomials. In section 3, we consider its approximation on a
grid. NTT and FNT are recalled in section 4. Application of
the Gauss-Legendre quadrature and FNT for ambiguity func-
tions calculation is presented in section 5 where examples
of standard radar waveforms ambiguity functions calculation
are presented.

2. GAUSS-LEGENDRE QUADRATURE

The Gauss-Legendre quadrature method is a member of the
Gaussian quadrature family [8]. Let us consider an integral
expression over interval [0, 1] (generalization to more general
finite intervals is straightforward), of the form

1
I:/0 g(x)dx. (2)

For a given weight function w(x) on [0, 1], we define the inner
product of g and 4 as

< g h>= /Ol w(x)g(x)h(x)dx. 3)

For this inner product, orthogonal polynomials sequences
(pi(x))ien are sequences of polynomials with degree of p;
equal to i that satisfy < p;,p; >= &;;, where §;; is Kro-
necker’s delta function.

Legendre polynomials form such an orthogonal family
for weight function w(x) = 1, for all x. They can be defined
in several ways. In particular. In particular, they satisfy the
following recurrence relationships:

po(x) = 1 pi(x)=x “)

(n+1)P1(x) = (2n+Daxpy(x) —npp—1(x), n>1.

Alternatively, they can be described by Rodrigues’ represen-
tation:

I A
21! dxt

Pa(x) (2 =1)"). (5)
For a fixed positive integer m, it is possible to compute a
quadrature formula for I (see Eq. (2)), that is, a weighted
discrete sum approximation of the integral, of the form

Y, wig(xi) (6)

i=1,m

such that this approximation matches exactly I whenever g
is a polynomial of degree at most 2m — 1. Then, quadrature
is said to be of order 2m. In addition, if g is a more general
function, the quadrature approximation error is of the form

g2 (E)/((2m)! pimm) for some & €]0, 1], provided g>") ex-
ists, and with py, , the leading coefficient of p,,(x).

Nodes x; must be chosen as the roots of p,,(x), that can
be proved to be distinct, and coefficients w; are solutions of
equations

1
/xkdx: Y wak, k=0,.m—1. )
0 i=1,m

Gauss quadrature has become very popular with devel-
opment of computers. Efficient algorithms for computing
quadrature rules can be found in the literature [11]. Prac-
tical implementations are also available for many program-
ming languages (see for instance [12], function gauss.m, for
a MATLAB implementation).

3. APPROXIMATE GAUSS QUADRATURE

As discussed in the introduction, irregular sampling node
spacing of Gauss quadrature does not preserves convolu-
tion structure in quadrature formula of a convolution integral.
This drawback can be overcome by approximating nodes of
the quadrature formula (that is zeroes of Legendre polyno-
mial) by their closest neighbors on a regular grid. Thus,
nodes (x;)j=1,, are replaced by new ones, located on the
grid at locations (£;);=1 . Of course, quadrature order is no
longer 2m, but, at least, it can be made equal to m by slightly
moving coefficients w;. Indeed, once the (£;)i—1,, are fixed,
it suffices to replace the (w;);—n by coefficients (W;);—, such
that

1
/xkdx: Y it k=0,...m—1. ®)
0

i=1,m

The smaller the grid step, the more accurate the Gauss
quadrature approximation supplied by node-weight pairs
(X, W;)i=1,m Will be.

On another hand we have checked that using quan-
tized Gauss-Legendre nodes without updating corresponding
weights leads to poor error performance, especially for low
degree polynomials integration.

Letting X; = k;A, where A is the grid stepsize, the quadra-
ture formula for convolution integral fol g(x—u)h(u)du with
x =tpA leads to a discrete convolution equation of the form

A

8(to —1)h(t), )
0

—_
~

t

where g(to — 1) = g((to —1)A) and either h(t) = w;h(k;A) if
t = k; for some i € {1,...,m} or h(t) = 0 otherwise. Thus,
the FFT of & can be achieved with reduced computional effort
since it has many zero entries.

When considering function (7, f), since r(¢) and u(t)
can have complex values, the convolution can be splitted into
a sum of four integrals each representing a convolution where
&(t) is the real or imaginary part of the sampled u*(x), while
h(t) corresponds to the weighted real or imaginary part of
r(x)exp(2imfx). Note that if targets contributions are such
that large delays should be considered, then /(z) should be
much longer than g(¢) which makes even more interesting
the presence of many zeros in sequence h.
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Fig.1. shows the quadrature error for polynomials
(x*)k=0.20 integrated on [0, 1] as a function of polynomial de-
grees (Fig.1-a) and of the number of quadrature nodes (Fig.1-
b) respectively.

Here, the exact Gauss-Legendre (GL) quadrature is
achieved with m = 8 nodes, which yields exact quadrature
formulas for polynomial degrees up to 15. The m = 8 nodes
Newton-Cotes (NC) quadrature is exact only for polynomial
degrees up to 7. The grid approximated nodes of the quan-
tized GL that we introduced here above also supplies ex-
act quadrature for polynomial degrees up to 7, thanks to
weights updating (weights (W;);—1 »). Only true GL quadra-
ture achieves negligible error as degree grows form 8§ to 20
(Fig 1-a). However, the error of our quantized GL quadrature
remains much lower than NC quadrature (about for times
smaller for [y x2°dx), while the sampling grid size is 32
points.

In Fig.1-b, we compare quadrature formulas for fol xBdx.
The error is drawn for the three methods as a function of the
number of quadrature nodes, ranging from 1 to 8. Here again
the quantization grid has 32 regularly spaced points.

@ <502
6

Integration error
\\

o e
e

HIE
Polynomial degree

()
045

Integration error

i 5 o
Number of points

Figure 1: Integration error as a function of a) polynomial
degree b) number of points, for exact and quantized Gauss-
Legendre (GL) and Newton-Cotes (NC) quadrature. Quanti-
zation grid has 16 points. In b), integrated polynomial order
is 15.

4. NUMBER THEORETICAL TRANSFORMS
4.1 Modular arithmetic reminders

Let us begin with some reminders of modular arithmetic.
Two integers a and b are said to be congruent modulo M if

a=b+kM, (10)

where k is some integer. This is written as a = b (mod M).
All integers are congruent modulo M to some integer in the
finite set (0, 1,2,...,M — 1) which is called the set of integers

modulo M and denoted by Zy (or Z/MZ). Zy is aring. All

nonzero integers of Zy; have an inverse for multiplication if

and only if M is prime, in which case Z,, is a finite field.
Let o denote an integer relatively prime to M. If N is the

smallest positive integer such that

N=1

o (mod M), (1)

then ¢ is said to be a root of unity of order N. This concept is
of particular interest when « is a generator of the field, that
is, when

Zy ={o'i=0,1,....M—2}U{0}. (12)

In such a case, « is called a primitive root. Clearly, the inter-
est of this property lies in simplified products calculation: if
b=o'and c = o/, then bc = o't/ (mod M). In particular, if
o =2 is a generator, multiplications in Zy; simply amount to
register shifts. Further elements of number theory basics can
be found in books [13, 14] for instance.

4.2 Number Theoretic Transforms

Let o be a root of unity of order N in Zj; and assume that N
has an inverse in Zj;. Then, the NTT and its inverse (INTT)
for a sequence (xg)x=on—1 Of Zy are defined by

Xe =YV lx, ™ (mod M), k=0,1,...N—1;
Xp =NTTYN Xea ™ (mod M), n=0,1,..,N—1.
(13)

These transforms implement cyclic convolution. Letting
(%n)n=0n—1 and (h,),—on—1 denote sequences of Zy, and
(¥n)n=0,n—1 their cross-correlation defined by [15]

n—1

Yn = Z xmhn+1n (mOd M),
m=0

n=0,1,..N—1, (14)

v, can also be calculated as

Yo =INTT[Xy_ x He  (modM)]. (15)

In order to avoid congruence ambiguity in practical cal-
culations, one should ensure that for any #n, in Eq. (14) we
have |}~ 10 Xmhutm| < M /2. This is true whence the follow-
ing condition is satisfied [10, 15]

N—1

M
] < max Y (| < = (16)
n=0

It seems that using NTT for convolution has been in-
troduced by Rader in [16, 17], where Mersenne numbers
and Fermat numbers respectively are considered for M.
Mersenne numbers are of the form M = 2” — 1, where p is
prime, while Fermat numbers are of the form M = 22 + 1.

The problem of a good choice for M is addressed in [10].
The authors show that such a good choice should respect the
following conditions. First, there must exist a root of unity
of order N such that the prime decomposition of N has many
factors (and preferably is a power of 2) for a fast FFT-like
algorithm to exist. In addition, N should be large enough
to enable calculation of large sequences convolution. Fur-
thermore, the binary representation of o should be simple
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enough to enable fast calculation of powers of o. Idealy, o
should be a power of two. And the binary representation of
M should be simple too, to ensure easy modulo M operations.

In [10], the authors have shown that this leads to select
M as a Fermat number. Then, the particular choice @ =2 is
of order N = 2! while o = 2% ~2(22"' — 1) (a?® = 2) has
maximum possible order N = 2!+,

Note that applying the Fast Fermat Number Transform
(FFNT) requires about Nlog, N simple operations that are
bits shifts and additions but not multiplication, while FFT
requires about Nlog, N multiplications. About 30% of com-
putational effort can be spared for convolving two sequences
if FFNT implementation instead of FFT is considered [10].

5. APPLICATION TO AMBIGUITY FUNCTION
COMPUTATION

As discussed in the introduction, the radar ambiguity func-
tion is a tool for radar designers and for radar detection
and estimation. For targets detection, one looks for time
and delay shifted versions of the ambiguity function in
the cross-ambiguity representation calculated between a re-
flected radar signal and the emitted waveform.

Restricting here our interest to the ambiguity function
calculation, we consider three particular standard wave-
forms, namely a single pulse, a Linear Frequency Modula-
tion Waveform (LFM) and a pulse train. Ambiguity func-
tions of these waveforms can be calculated in closed form;
They are given respectively by

ui(t) = ﬁrect(é)

u (1) ﬁrect(%exp(%nﬁtz)) (17)

us(t) = o X i (1~ kT)

where

t 1 —d<r<d
) = 2>l >3
rect(d ) { 0 otherwise.

and d is the pulse duration. The corresponding ambiguity
functions are expressed as follows:

%l(r’f) = ) |T|Sd

sinzf(d—
(1= ) St

)sinnd(2ﬁf+f)1(1*%) , |7;| <d

nd2pr+£) (1-17)

XZ(Taf) = ‘(l_%

sinzf (N—|k|T) ‘
NrfT
(18)

Parameter values are d = 1s for the single pulse and LFM
waveforms and d = 0.2s for the pulse train, § = 2.5Hz s~ !,
N =4 and T = Is. These ambiguity functions are plotted
in Fig.2. We computed yx (7, f) (k = 1,2,3) by using node
quantized Gauss quadrature and FNT as described in previ-
ous sections. Letting %4 (7, f) (k = 1,2,3) denote the calcu-
lated approximation, we shall consider the performance in-
dices given by the mean square error, that is defined by

1T f) = L vyl (c—kT,f) %

MSE, =mean ;) (|2(7, f) — 2(T, F)?). (19
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Figure 2: Ambiguity functions for a) a single pulse, b) a
Linear Frequency Modulation Waveforms (LFM) c) a pulse
train.

Figure 3 shows mean square error MSE; (k = 1,2,3)
as a function of the number of quadrature points. Here,

M =22 4 1=65537. Quadrature is achieved by slicing the
convolution interval into 8 sub-intervals for single pulse and
LFM waveforms and 64 for the train pulse. Inside each sub-
interval, quantized GL quadrature is performed using a 16
points regular grid for single pulse and LFM waveforms and
using only 4 nodes for the pulse train, thus leading to the
same total number of nodes for each waveform processing.
We check that quantized GL quadrature error is lower than
NC quadrature while finite field quantization of amplitude,
which is required for NTT implementation, has no notice-
able effect (curves o and V). Here, the FNT is performed on
stacked node values grids of all quadrature sub-intervals.

Let us remark that lower performance is achieved by
pulse train than by other waveforms, due to more irregular
shape of integrated function.

Let n denote the number of equally spaced points on
the grid and m the number of nodes of Gauss-Legendre
quadrature. As noted in section 4, computing the FNT is
a very simple operation on a binary machine. To compute a
length nm fast FNT, nmlog, nm additions/subtractions, and
(nm/2)log, nm/2 multiplications by some powers of 2 are
required which are implemented as bit shifts and subtrac-
tions [10]. If two sequences (X;)i=1,m and (%;)i=1 m are to
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Figure 3: Mean square error as a function of the number of
points, for a) single pulse, b) Linear Frequency Modulation
(LFM) c) pulse train.

be convolved, the convolution product complexity is of or-
der nm. Finally, if Ny values of the frequency are considered
for calculating the ambiguity function, the whole ambiguity
function can be calculated at the expense of order Nynm op-
erations.

6. CONCLUSION

In this paper we have introduced a new approach for fast con-
volution calculation based on approximate Gauss-Legendre
quadrature on a regular grid, associated with FNT algorithm.
We have checked good behavior of this procedure when ap-
plied to standard radar waveforms ambiguity functions cal-
culation at the expense of low computational complexity.
Clearly, for convolutions involving integration on a semi-
infinite interval, or on R, this method can be adapted by using
Gauss-Laguerre and Gauss-Hermite quadrature respectively.
On another hand, one can also benefit from the fact that in
many situations phase variation induced by frequency off-
set little varies inside quadrature intervals leading to further
complexity reduction.
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