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ABSTRACT
Most applications of sparse representations are based on

a combined ¢5—/; criterion, where the least-squares-part
ensures closeness to the observations and the ¢;-part
sparsity. This choice leads to quite efficient algorithms
and has a clear connection to maximum likelihood ap-
proaches in case of additive Gaussian noise. We replace
the least-squares-part by a ¢i-part and investigate the
recovery conditions of the so-obtained ¢; — ¢; criterion.
We then propose an algorithm, that minimizes the cri-
terion, in a finite number of steps.

1. INTRODUCTION

”Sparse representation” is a technique that consists in
decomposing a signal (a finite dimensional vector) into
a small number of components (vectors) chosen from a
user-designed over-complete set called the dictionary. It
is mostly used to obtain a simple approximate model of
a complex signal for compression or coding purposes in
audio or video signal processing [1, 2|, but theoretical
investigations tend to extend its applicability to a vari-
ety of new domains, as for instance, compressed sensing
or compressed sampling, in which one investigates the
possibility to sample a signal at a rate much lower than
the Nyquist rate with a controlled loss in information
3, 4].

The current interest has been initiated in [5] but ear-
lier investigations had been proposed in different areas,
[6, 7, 8].

The following problem is considered in [5], and later
generalized, in e.g. [9, 10]. Given a nxm matrix A
with m > n and a vector b that indeed admits an ex-
act sparse representation, say b = Ax,, with x, having
just a few non-zero components, when is it possible to
recover z,? It is shown that, if the number of non-zero
entries in x, is smaller than a given bound, then z, is
indeed the unique sparsest representation. It is also es-
tablished that one can replace the exhaustive search for
the sparsest solution by the easy to solve linear program

min IE3IR st. Az =0, (1)
while keeping similar bounds on the number of non-zero
entries in x,. But seeking the sparsest exact represen-
tation may be useless, either because there is none, or
there is one, but observed in additive noise. An ap-
proximate reconstruction is often preferable and it then
makes sense to replace (1) by [10]

min [z st [[Az—blJ3 < p?, (2)

with p? the tolerance to be defined, or, somehow equiv-
alently, by the following criterion

1
min 2| Az = blj3 + Allz]r,  h>0. (3)

One seeks the representation with smallest ¢;-norm,
that yields an approximation error smaller than a spec-
ified threshold. This criterion is the most often con-
sidered currently and fast dedicated algorithms that are
quite efficient and thus allow to handle problems of large
dimensions, have been developed [12, 15, 11]. In the se-
quel, we propose to replace the criterion (2) by

min o st Az - bl <p, (4)

where in the constraint that bounds the reconstruction
error the ¢5-norm is replaced by an ¢;-norm [14]. While
the fo-norm on the residual vector r = Az — b is clearly
associated with Gaussian noise, the ¢1-norm is associ-
ated with Laplace or double-exponential noise. This
optimization problem is convex and can be transformed
into a linear program, but we will handle it in a different
way, to get the recovery conditions that will tell us un-
der which conditions is it possible to recover x, from the
optimum of (4) with b = Az, and to develop an opti-
mization algorithm that converges in a number of steps,
possibly much smaller than the number of steps required
by, say, the simplex algorithm for linear programs.

2. THE CRITERION

2.1 Preliminary remarks

We consider the following problem:

min ||z||; subject to [[Ax —b||; < p,
x

where p > 0 has to be fixed by the user. It is in-
structing to transform the problem into a linear pro-
gram by introducing slack variables. The standard idea
is to split the component x; of z into x} = max(z;,0),
r; = max(—z;,0) and to replace z; by z;7 — z; and
|z;| by = + x; and more generally z by 2+ — 2~ and
llz|ls by 17 (2 +27) with 1 a vector of 1’s of adequate
dimension. Applying the same kind of operation to the
constraint, one gets the following program

min 17zt +27) (5)

ztz— ¢t t— w



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

s.t. Azt —a7)—b=t" -1,
't +t7) +w=p,
zt 7, t, T, w > 0.

Since this linear program in standard form has
2m+2n+1 variables and n+1 equality constraints, its
optimum is generically attained at a point having n+1
nonzero components and if p of these components belong
to x, the remaining n + 1 — p components belong to t,
since w is obviously equal to zero at the optimum. This
is turn tells us that Az is equal to b at p — 1 locations,
i.e., for p — 1 indexes.

The dual of this linear program is now straightfor-
ward to obtain and rewriting it in a compact way one
gets

max bld+ps st |[ATd|| <1, < —|/d|so

which leads to

m(zi;mbedfp1||al||00 st |ATd|| <1 (6)

It is not a surprise that ¢1-norms in the primal lead to
fs-norms in the dual. Remember that in the £,-norms
context, dual norms are such that % + % = 1, thus ¢,
and £, are dual norms.

2.2 Optimality conditions

In order to be able to characterize easily the conditions
satisfied by the optimum of (4), we introduce the sub-
differential of a convex function f at a point x, denoted
Of(x) [18]. It is useful for functions that are not contin-
uously differentiable at all points, as for instance ||z
when z has zero components. It is a set of vectors
called the sub-gradients of f at x and the set reduces
to the gradient at points where f is differentiable. For
#(x) = |z, one has

0 ||zllx = {ul| u; = sign(x;) if x; # 0,
|u;] <1 otherwise}
9 ||zlloe = {0l || = [|2]loc = @ivi >0,
|i] < [|[2]loo = vi =0, (7)
lollh = 1if x #0,||v]1 <1 else}

where sign(z;) =1 if ;> 0 and sign(z;) = —1 if 2;< 0.

It is now easy to obtain the optimality conditions
for (4). Since this problem is convex, the first order
necessary optimality conditions are also sufficient. The
Lagrangian of the primal is

Uz, p) = |zl + p(l[Az = bly = p), 120

and the optimality conditions are thus

u'+pATw = 0, with o' € 9||z||;, w € 9||Az—bl|y, u > 0.

One gets equivalent conditions that are in a form that
is more suited for our later use when one considers both
the primal (4) and the dual (6). One has the following
theorem.

Theorem 1. The optima of (4) and (6) are respec-
tively z and d if and only if

Az —b=—-pv and ATd=u

for some u € 9||z|; and v € I||d||lc ¢ (8)
Proof: The proof is immediate. Both points « and d
are feasible and lead to identical costs. o

One can of course verify that these conditions are
equivalent to those developed just above using the La-
grangian.

We will use the two relations in (8) to both obtain
recovery conditions and develop the announced iterative
algorithm.

2.3 Some specific notations

Partitioning will play an important role in the sequel
and we now introduce the, somehow awkward, notations
that we will use. We will split or partition the optimum
x, of dimension m, into its non-zero components, we
denote Z, and its zero components Z, and partition ac-
cordingly (the columns in) A into A and A. It then
follows that, for instance, Az = AZ or from (7), that
the sub-gradient u € 9||z||; is such that @ =sign(Z) and
oo < 1.

We will also introduce d-induced partitions of the
rows of d, v, A and b. We have seen above that, if the
optimal = has p nonzero components, then Az — b has
p - 1 zero components which tells us that v in (8) has
p — 1 zero components. This in turn, see (7), implies
that generically the optimal d has n - p + 1 components
equal to %||d|| and the p — 1 remaining components
that are smaller in absolute value. We thus partition
the optimal d into d of dimension p — 1, which satisfies
ldlloc < |ldlloc and d = ||d||cosign(d). We partition

accordingly v into v = 0 and v which satisfies [|v[[; =1
and v7d = ||d||so.

The matrix A will thus be partitioned into four
blocks with, e.g., A of dimension (p — 1, p).

3. RECOVERY CONDITIONS

We are interested in conditions under which the opti-
mum of (4) with b = Az, and p small enough allows to
TeCcover T,.

The optimum z of (4) will not be equal to z, for
p > 0. What one asks for, is that its sub-gradient u
satisfies 4 =sign(7,) and [|u] <1, this guaranties that
the optimum z and x, have their nonzero components
at the same locations and with the same signs. We will
prove that, if the conditions in Theorem 2 below are
satisfied then, for p sufficiently small, the optimum z of
(4) is of the form = = z, — pz with Z(p) = T, — pz and
z = 0, for some vector z to be defined below.

Theorem 2. The solution z, of Ar = b with
b= Az, = A,T, and A, a full-rank matrix, can be
recovered from the unique optimum point z(p) of (4),
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for p sufficiently small, if there exists
0= argn%in [6]/oc s.t. ALS = sign(a,)

. =T

that satisfies || A4, d|loc < 1 o (9)
Notice the zo-induced partition of the columns of A that leads to
A,, for instance, to be distinguished from A.

Proof: If there is a vector ¢ that satisfies (9), this
same ¢ is an optimum of

min 9l s.t. 4TS = sign(,), 1AL 8] < 1. (10)
One can then establish that the dual of (10) is
maxsign(,)z — |21 st Aoz + AoZ[1 <1 (11)

where we have partitioned the vector z of dimension m
as z = [27 ZT]T using the z,-induced partition. We
shall see later that z = 0 which justifies a posteriori this
notation.

The Lagrange dual (11) of (10) can be obtained by
transforming these problems into linear programs, for
instance.

Remember now that the optimum z of the dual are
the Lagrange multipliers associated with the constraints
of the primal. At the optimum, Z is thus to be associated

with AT = sign(,) and 7 with || A. 6]l < 1.

With the optimum § of (10) that satisfies (9) is then
associated an optimum z of the dual that is such that
Zz = 0 because the second set of constraints in the primal
are strictly satisfied.

Choosing then these optimal § and z that satisfy (9)
and lead to identical costs in (10,11), we construct z, d
and their associated sub-gradients that satisfy (8).

We take d in (8) equal to ¢ in (10) and propose to
define u as u = AT§. From the constraints in (10) it
follows that this u is indeed such that @ = sign(%,) and
l#]loc < 1 which are the properties required for a sub-
gradient of ||z||; for an x that has the same structure as
Zo -

We further define v = Az = A,Z and © = z, — pz
and establish that they satisfy (8). We know already
that z and x, have the same partition which is thus also
valid for z.

Premultiplying ¢ = z, — pz by A we get Ax =b—pv
with v = Az = A,Z which has then the properties
required for a sub-gradient in J||d||. One can, for
instance, observe that the dual can a posteriori be
rewritten max ||Z||1 subject to ||A,z||1 < 1 which attains
generically its optimum at a point where A,Z is zero at
p — 1 locations. o

We are reached our goal, we have obtained the con-
ditions (9) under which z, can be recovered from the
solution of (4).

To summarize, we have shown that if Theorem 2.
is satisfied, the optimum x of (4) can be written x =
xo — pz with z the optimum of (11) that admits the
same partition as x,. It follows that x, can be recovered
from z, for p sufficiently small.

As opposed to the recovery conditions one gets for
the £o-norm (2,3), for which the equivalent of (9), admits
a explicit solution [10], that can be further transformed
into explicit conditions on the sparsity of x,, no such
miracle happens for the ¢1-norm, since the optimum of
(9) has no explicit analytical expression.

For completeness let us add that it has been shown
in [10] that (1) allows to recover z, provided there is a

. =T
vector d that satisfies AL'd = sign(z,) and || 4, d|e < 1.
For the present criterion these conditions have to be
satisfied by a d that has minimal £,.-norm.

4. OPTIMIZATION ALGORITHM
4.1 Introduction

The solution of (4) can be obtained, for instance, ap-
plying the simplex algorithm to (4) rewritten as a linear
program. We propose to obtain it using an algorithm
based on the two relations in (8) that solves (4) in a finite
number of steps and is more efficient than the standard
linear program solvers.

Due to the presence of u and v, which belong to sets,
the two relations in (8) are far from defining the optimal
x and d. They nevertheless carry a lot of information,
that is helpful if one is interested in the way the opti-
mal z and d vary locally with p. More precisely, if the
optima are known for a given value of p, they implic-
itly define how they vary in the neighborhood of this
p and also carry enough information to precisely locate
the boundaries of the neighborhood, i.e. the interval in
p, on which the optima can be extended.

As a matter of fact, it is then also possible to cross
these boundary, i.e., to propagate the optima to the next
interval. This is the idea that is used to develop the
algorithm. It remains only to initialize the procedure
and this is easily done by starting with p > pg = ||b]|1
for which the optimal x and d are both at zero. As
p decreases, there is a first interval | p1, po], in which
the optimal z has just one non-zero component, then
a second interval for which it has two non-zero com-
ponents, and so on. Note that the number of nonzero
components in z(p) does not necessarily increase as p de-
creases. Though we are only interested in the optimum
for a given value of p, we will build it, for decreasing p,
and stop when the p of interest is in the current interval.

4.2 Development: the standard step

Assume we have the quadruple x, u, d, v, that satis-
fies the optimality conditions (8) for a given p, we will
extend it within an interval in p. We partition the four
vectors, using the notations introduced in Section 2.3.
The boundaries of the intervals are precisely the values
of p for which these partitions need to be changed.

We denote p the number of nonzero components in
the optimal x that are in Z, this implies that v € 9||d||
has p — 1 zero components in v. These two observations
fully characterize the partitions described in Section 2.3.

From the second condition in (8), ATd = u, it follows

ATd= 5 and A d= @

but since, see (7), d can be partitioned into d and
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d =sign(v) ||d||s, one has

ATd=u = ATd+|d|A" sign (v) = .

This can be seen as a set of p equations in p unknowns
in d and ||d||~ and tells us that d remains constant as
p varies within an interval. The same thus holds for
i=A4d

The first condition in (8) Az —b = —p v similarly
yields

AT —b=—pv = Az=0>b and éizg—pg
The last of these relations premultiplied by sign(g)T
leads to

sign(g)Téi = sign(g)TQ —p

a linear equation which together with Az = b forms a
system of p equations in the p unknowns Z. Provided
the matrix of this system is invertible, which we will
assume, we get an expression of the optimal Z of the
form, say, Z(p) = X1—pXs. Substituting this expression
in AT = b — p v, one gets in turn an expression of the
optimal v of the form, say, v(p) = V1 + Va/p.

It follows that, as p varies, within the current
interval, only Z and v are varying, the remaining (six)
parts in the optimal quadruple x, u, d, v are invariant.

As p varies, two remarkable events can happen: a
component in v(p) becomes equal to 0 or a component
in Z(p) becomes zero. The upper bound p,, (lower bound
pi) of the current interval is the p associated with the
event that happens first when p is increases (decreases).
We will only consider decreasing values of p but both
events can nevertheless happen.

o If component ip41 in v(p) becomes zero first, as
p=p;. Three different changes can happen as p further
decreases. i) The corresponding component in d changes
its sign and the partitions remain the same. ii) The cor-
responding component in d becomes smaller is moved
from d to d and another component of d moves the other
way. iii) The corresponding component in d becomes
smaller is moved from d to d and a component of x, or
more precisely  becomes nonzero. In case i) and ii) p
remains constant while in case iii) it increases by one.

o If, as p decreases, a component in Z(p) becomes
zero first for p = p;, again three different changes can
happen as p further decreases. i) One allows the com-
ponent to change its sign and the partitions remain the
same. ii) One sets this component to zero, moves it
from T to T and another component in x moves the
other way. 1iii) One sets this component to zero, moves
it from T to Z and moves similarly a component from d
to d. In case i) and ii) p remains constant while in case
iii) it decreases by one.

Whether the new boundary value is attained in v(p)
or in Z(p) , to test the three types of potential modifi-
cations and find the optimal one, one uses the condition
ATd = u. In cases i) and ii) p remains constant and only
ATd = 4 intervenes, while in case iii) both ATd =

and ATd = u are to be used. In each case one com-
putes the new d vector (with its characteristic struc-
ture), checks that it satisfies ||d||oc < ||d|co and retains
the optimal modifications which is the one for which
|ld|oo undergoes the smallest increase. Remember that
d and thus also ||d|o remain constant over the whole
interval and thus jumps to a new value when crossing a
boundary, the optimal modification can be shown to be
the one associated with the smallest increase in ||d|| .

We do not detail how all these potential new d-
vectors are computed, the computational complexity is
quite low and just three order-p matrices have to be
inverted, one in each case.

There is of course, generically, only one optimal so-
lution for any p and thus one optimal modification when
crossing a boundary. Instead of selecting among all the
valid modifications (those for which ||d||c < ||d|oo) the
one with the smallest jump, one can also for each valid
modification complement d with the associated v, z and
u and stop the search as soon as the current modification
satisfies (8).

It remains to detail the initialization step.

4.3 The initialization step

One can use both the primal (4) or dual form (6) of the
criterion to justify the initialization step but it can also
be deduced from the optimality conditions (8).

From the primal, it follows that for p > py = [|b]|1,
the first boundary value, the optimum is at z = 0. For
p slightly smaller the most efficient component in x has
index j; = arg max; |ajTSign(b)| with a; the j-th column
of A, and has sign the sign of a] sign(b)

In the dual, the optimum is at zero for p > py and
for p slightly smaller, the most efficient d is of the form
d = a sign(b), where « is fixed by the most constraining
constraint. It is constraint j; and the associated « is
o =1/|a] sign(b)|.

At this point one can commute to the standard pro-
cedure with p the number of nonzero components in
the optimal z equal to one. More formally we have
among others: A =a;,, b =5, v = v, sign(v) =sign(b).
d = d = ||d||osign(v) and the next event to happen, that
will define p; , the next boundary value, is a component
in v that becomes zero as Z(p) = x;, (p) increases since
the other event is not possible when p = 1.

4.4 Relations to previous works

Several recent papers have proposed similar path-
following methods for solving (3), [12, 15, 11]. All these
methods are related to continuation techniques, which
have also been studied in the optimization literature
[13]. When the solution is sparse, i.e. when the (un-
known) optimum has just a few non-zero components,
they are indeed very fast but their computational com-
plexity increases more than linearly in the number of
non zero components in the optimum. To our knowl-
edge, however, no such algorithms have been proposed
for the criterion (4) except for some preliminary remarks
in [14].
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5. CONCLUDING REMARKS

We have considered the criterion

min ||z||y subject to |[Az — |1 < p,
xT

that is known as a ¢1- ¢; penalized criterion. We have
indicated how it is possible to use it in a sparse rep-
resentation context where the A-matrix has far more
columns than rows and presented so-called recovery con-
ditions. We have also shown how to construct a fast
algorithm that minimizes it. While the criterion can be
transformed into a linear program and thus solved us-
ing standard subroutines, our approach is indeed faster
if the number of non-zero component in the optimum is
small, corresponding to so-called degenerate linear pro-
grams. So far we have applied this criterion to image
denoising and coding and in both cases, it appears that,
at least for the preliminary investigations we performed,
the results are less good than those obtained using the
standard ¢;- {5 penalized criterion

1
min || Az — b2+ nl|z|l;, h>0.

We now plan to investigate its applicability in decoding
linear codes. Linear programming and sparse represen-
tations approaches have already been considered in this
context [16, 17]. In this application it is more the recov-
ery conditions obtained for the criterion that might be
of interest.
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