16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

OVERSAMPLED DFT FILTER BANKS FOR ERROR CORRECTION CODING

Tanja Karp', Michel Kieffer?, and Pierre Duhamel?

! Department of Electrical and Computer Engineering, Texas Tech University
P.O. Box 43102, Lubbock, TX, 79409, USA, tanja.karp@ttu.edu

2 Laboratoire des Signaux et Systémes, CNRS - SUPELEC - Univ. de Paris-Sud
91192 Gif-sur Yvette, France, kieffer @lss.supelec.fr, pierre.duhamel @Iss.supelec.fr

ABSTRACT

In this paper we present a new approach to design parity-
check polynomial matrices for oversampled DFT filter
banks, which operate in the frequency domain and exploit
the efficient polyphase structure of the filter bank. When
compared to general filter banks, the design ease is signifi-
cantly improved due to a reduced number of parameters, the
numerical robustness of the parity check polynomial design
increases, and an improved localization of errors in the ob-
served syndroms is obtained. We apply our design to the de-
tection of impulse errors in Gaussian background noise and
evaluate the performance with respect to filter bank parame-
ters and statistical information on the transmission channel.

1. INTRODUCTION

During the last years a growing attention was given to
oversampled filter banks with perfect reconstruction (PR)
[1, 2, 3, 4]. These filter banks have many advantages over
critically-sampled filter banks. First, they provide increased
design freedom for the synthesis filter bank: for a given anal-
ysis filter bank, the synthesis filter bank providing PR is not
unique [5, 1, 6, 7]. Second, they allow higher attenuation in
the stop-band [8]. Third, they may have an improved noise
immunity (e.g. due to quantization of the subband signals),
since the variance of the reconstruction error is inversely pro-
portional to the oversampling factor [5, 9, 10]. Fourth, due
to the redundancy between their subbands, oversampled fil-
ter banks have shown to be robust to some subbands erasures
and errors. In [11] and [12], it is shown that a reconstruction
of the original signal with satisfying quality is possible as
long as enough subbands are present. Recently, oversampled
filter banks, interpreted as error-correcting codes working in
the real or complex domain, show their ability to detect and
correct errors affecting the subbands samples [13, 14, 15].

When being compared to critically-sampled filter banks
followed by traditional error correction codes, oversampled
filter banks provide larger versatility. While in the first case
the redundancy introduced by the error correction code does
not improve the quality of the reconstructed signal if no er-
rors occur during transmission, in the latter one it provides an
improved quality of the reconstructed signal since aliasing is
reduced in the oversampled filter bank when compared to the
critically-sampled filter bank.

The main idea presented in [13] consists of building a
parity-check polynomial matrix for oversampled filter banks.
The part of the communication scheme between the output
of the analysis filter bank and the input of the synthesis filter
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bank is modeled as a Gaussian-Bernoulli-Gaussian channel
[16, 17]. This memoryless channel introduces a mixture of
Gaussian noise of small variance (background quantization
noise) and the product of a Bernoulli process with a Gaus-
sian noise with large variance (impulse noise). Using at the
receiver-side the output of the parity-check polynomial ma-
trix, it is then possible to estimate the amplitudes and sub-
bands affected by the realizations of the impulse noise, in
spite of the presence of background noise.

Here, we concentrate on oversampled DFT filter banks
[4, 7], contrary to what has been done in [13], where modu-
lation was not considered. Modulated filter banks are inter-
esting because of their low computational complexity when
being implemented using the fast Fourier Transform (FFT).
In addition, the filter bank design reduces to the design of
a suitable lowpass prototype filter from which all analysis
and synthesis filters are derived. We consider the same joint
source-channel communication scenario and channel model
as in [13]. The analysis filter bank is used at the transmitter.
The encoded / quantized subband signals are then transmit-
ted over a noisy channel. At the receiver, the synthesis fil-
ter bank reconstructs the signal and at the same time detects
and corrects transmission errors with the help of parity-check
polynomials. The latter need to be implemented in addition
to the synthesis filter bank. In absence of quantization noise
and transmission errors, i.e. when the input of the synthesis
filter bank is identical to the output of the analysis filter bank,
the output signals of the parity check matrices, the so called
syndroms, are identical to zero. In presence of some im-
pulse errors, the correction algorithm presented in [13] could
be directly used. Nevertheless, as we show here, using the
efficient polyphase structure of DFT modulated filter banks
reduces the complexity of the error estimation.

The outline of the paper is as follows: In Section 2 we
revisit oversampled DFT filter banks and present our new
approach to calculate parity-check polynomials. Section 3
describes the considered channel model. The calculation of
syndroms at the output of the parity-check polynomials is
presented in Section 4. In Section 5 we derive syndrom-
based detection and correction of impulse errors. The hy-
pothesis testing applied is described in Section 6 and simu-
lation results are shown in Section 7, before drawing some
conclusions in Section 8.

2. OVERSAMPLED DFT FILTER BANKS

Figure 1 shows the efficient polyphase realization of an over-
sampled DFT filter bank with M subbands and a decimation
factor of N < M in the subbands [4]. The analysis filter bank
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Figure 1: Polyphase realization of oversampled DFT filter bank

calculates the subband signals
Y(z) = WE(2)X(z) €]

where X(z) denotes the z transform of the vector-
ized input signal x[n] = (x[nN], x[nN — 1], ..., x[nN — N +
1])", Y(z) the z transform of subband signals y[n] =
(vo[n], y1[n], ..., ym—1[n))T, W the M x M discrete Fourier
transform (DFT) modulation matrix with entries [W]; ; =
W, /v/M and Wy = exp(—j2%/M) being a complex rota-
tion factor. E(z) denotes the M x N sparse polyphase filter
matrix with entries

By = { ()

i=0,... . M—1,

if i —¢)modb=0
otherwise @

j=0,...N—1, (j+¢N)modM =i
with b =gcd(M,N) being the greatest common divider of M
and N, J = M/b, and Ej(z) being the kth of MN /b type-1
polyphase components of the lowpass prototype filter.

At the synthesis filter bank, the signal is reconstructed
from the received subband signals according to

X(z) = R(zx)WHY (2) 3)

where Y(z) denotes the z transform of subband signals and
R(z) of size N x M is the sparse synthesis polyphase filter
matrix. For the filter bank to provide PR and be paraunitary,
the following constraints apply to the polyphase matrices:

R(z)E(z) = Iy, R(z) = E(2), 4)
(5)

with [E(z)];; = [E*(1/z")];,j. The PR constraints can be ex-
pressed as b independent sets for M /b subbands each [4]:

EI(Z)EI(Z):IN/ZN lZO,,b—l (6)

where E;(z) is of size J x N /b and has the following entries:
[Ei(2)]ij = [E@)tivirjp (7)
In the following we restrict ourselves to paraunitary over-

sampled DFT filter banks with a linear phase FIR (finite im-
pulse response) prototype filter of length L.

2.1 Calculation of Parity Check Polynomials

The mathematical framework to derive parity check polyno-
mials from the filter bank polyphase matrix was already pre-
sented in [13]. The general scheme is shown in Figure 2,
where J[n| denotes the vector of subband signals and s|n]
the vector of the M — N syndroms created. However, in this
approach the polyphase decomposition of a general oversam-
pled filter bank was considered and for non-integer factors of
oversampling the parity-check polynomials have to be calcu-
lated through QR factorization. The major drawback of the
approach is the relatively high order of the resulting parity
check polynomials and thus a bad time localization of im-
pulse errors.

yn] s[n]
parity
—
check 1=
! polynomial !
| matrix 3
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—=M—1

Figure 2: Parity check polynomials at synthesis filter bank as
proposed in [13]

We here exploit the efficient realization of oversampled
DFT filter banks with a sparse polyphase filter matrix as
shown in Figure 1. Instead of calculating the syndroms di-
rectly from the subband signals, we first perform the inverse
DFT at the synthesis filter bank and then calculate the syn-
droms in the frequency domain from ¥[n]. The design of the
M — N parity check polynomials can now be split into the in-
dependent calculation of b parity-check polynomial matrices
C,(z) of size (M — N)/b x J, which are obtained by expand-
ing E;(z) from (7) to a J X J square paraunitary matrix

E)(z) _
G)me cwmy o

A prototype filter design algorithm which automatically
calculates C;(z) can be found in [4]. Alternatively, for a
given prototype filter, C;(z) can be calculated through QR
factorization of E;(z), similarly to [13] but using matrices
of significantly smaller size. Note that since E;(z) contains
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shifted polynomials in z/, see (7), so does C;(z), i.e. most
of its entries are zeros. Thus, for a prototype filter of length
L the b parity-check polynomial matrices C;(z) contain a to-
tal of [L(M — N)/N| non-zero entries. Note that with the
approach from [13] we would obtain a parity-check polyno-
mial matrix of size M x (M — N) and order L/N. Using the
new approach, the number of multiplications performed to
calculate the syndroms is thus reduced by a factor of M.

Vi[n] si[n]
11—
—2 - 1
CI(Z) :

Figure 3: New parity check polynomials

3. CHANNEL MODEL

In communication contexts, the samples at the output of the
analysis filter bank encounter several processing steps be-
fore being transmitted over the channel (quantization, en-
tropy coding, channel coding, modulation...). Here, as in
[17], the part of the communication scheme between the out-
put of the analysis filter bank and the input of the synthesis
filter bank is represented by a Gaussian-Bernoulli-Gaussian
channel [16]. More precisely, we assume that §[n] is cor-
rupted by two independent noise sources:

1. Gaussian background noise caused by quantization. It
is modeled as i.i.d. Gaussian noise with zero mean and
identical variance Gg in all subbands.

2. Bernoulli-Gaussian impulse noise due to non-corrected
channel noise and amplified by inverse quantization. Im-
pulses occur with probability p; and are assumed equally
likely in all subbands. Thus, in each subband a Gaussian
noise with zero mean and variance Giz is multiplied with
a Bernoulli sequence of i.i.d. zeros and ones, where the
probability of a one is p;.

More details about this channel model and its validity for

various actual communication channels can be found in [13,
17].

4. SYNDROM CALCULATION AND PROPERTIES

The outputs of the parity check polynomials are called the
syndroms. In the case where §[n] = y[n], i.e. where no quan-
tization of the subband signals is performed and no impulse
errors occur, all syndroms are equal to zero. In the presence
of both noise sources, the syndroms s; j[n] are composed of a

term s; ; [n] due to the Gaussian background noise and a term
s}') ;[n] caused by the impulse noise.

s1j[n] = s§ ;[n] + 57 1), 9)

M—N
j=0,..., —— 1

[=0,....b6—1
) 9 ) b

4.1 Syndroms Generated by Gaussian Noise

For the part s‘,g J[n] of the syndroms caused by the Gaussian
background noise modelling the quantization error, it can be
easily shown that they have an i.i.d. Gaussian distribution
with the same variance Gg as the Gaussian background noise.

4.2 Syndroms Generated by Impulse Noise

Let’s consider that a single, complex valued noise impulse a
is present in subband 1 at time instance k. After performing
the inverse DFT, the impulse error is spread over all subbands
and is then fed into the parity check polynomials in order
to calculate the syndroms. This is the main difference with
[13], where the impulse error enters directly the parity-check
polynomial matrix.
The syndroms caused from this error are given by

' a =l o
s1.:ln = N/ Y éipn— K]WM([ﬂb)n (10)
=0
1=0,.. b1, izO,...@—l

Thus, a single impulse error is affecting the syndrom at
L;; taps, where L; ; is determined by the number of values n
for which

J-1 .
251,(:‘,])[”— K]WA;([JrJg)n #0 (11)
=0

We gather all these values in a syndrom vector Sf .[x] with

S;:’l-[K — KL[},-fl]
574 — K, 2]

spilk] = =a-q.in] (12)
55,,‘[’(—. K7,i.0]
1=0,..b—1, izo,...$—1
with
él,(i,j)[—KL,,iH]
a.n) = ﬁjz‘;WM(ng)n Cla(i,j)[_:KleiJrz] (13)

51,(1',]') - Kz,i,o]

Note that q;;[n] is a signature waveform that only de-
pends on the filter bank parameters (and thus parity check
polynomials), the subband index 1 in which the error oc-
curred, and the indices /, and i. It can be pre-calculated and
stored for each value of 7.

Concatenation of all (M — N) syndroms to one results in
one syndrom vector s'[k] = a-q[n]. It can be easily shown
that [|a, (]| = |[[n]][2/M = 1/M and thus ||q[n]][> =
(M — N)/M. We denote the length of q[n] as L.

5. IMPULSE ERROR DETECTION

In the following we assume that the impulse error occurrence
rate is low enough that we can discard the case that a syn-
drom vector s[k] is corrupted by more than one impulse. If a
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complex impulse a is present at time instant k' in subband 7

we observe:
s[k] = s¥[k] + s'[k] = s*[K] +aq[n] (14)

To estimate the subband in which the impulse error oc-
curred and its value, we maximize the a posteriori probabil-
ity density function f(a,n|s[x]).

f(s[klla,n)f(a,n)
fla,nls[x]) =
f(slx])

1 jal?
——exp( -5} (6
' exp ( 20.2> (16)

1

(15)
with

flan) = fla)f(n) =

In the above equation f(s[k]) is simply a normalizing
constant and can be discarded in the estimation. If a single
impulse error of amplitude a is present in subband 7 at time
Kk, then after subtracting the error waveform caused by the
impulse error from the syndrom, the remaining syndrom is
caused by the Gaussian background noise.

F(sKllan) = f(s[K] ~aanllan)  (7)
1 s8 2
- G <_ [ z[z?n ) )

L e <_ (sk] — aqln])" (s[x] —aq[n]))
(2no2)Le/2

202
(19)
Thus, we calculate
(20)

(a,7)= argt(lal‘%f(S[K] —aq(n]la,n)f(a,n)

(_ (s[x] — aa[n))" (s[x] —aq[n)) la? )

= aIgI(B,?]))(eXp 26(3 27._12
21
= argmax (g(a,m)) (22)
with
elan) = — (slk] —aa(n)" (s[k] —aq[n]) |a]*
’ 207 207
_ [Is[K]|]* + [al* Y7~ — a"a"[n]s[k] —as[x]"an]  |a]*
265 2(;1.2

For all possible subbands 1 =0,...,M — 1 in which the error
could occur, we calculate a(n) from

() — sl

M—N o}

) .
W(g(a,n)) =0 = a

To find the optimal subband 1}, we plug (23) back into
(21) and obtain 7 as:

0-2
s[RI+ la(m) P (%+—)
(24)

i

7] = arg max

a(n)) 207

Thus, out of all M possible subband choices, the subband
7] is chosen for which |d(n)] is the largest.

6. HYPOTHESIS TESTING

To determine if an impulse error is present, the following
hypothesis test is performed: We observe the syndrom vec-
tor s[n] over a sliding window of size L. and calculate d(7)
according to (23) and (24). We decide that an error of ampli-
tude d is present in subband 7] and time instant x if

_ f(s[K]la(n))
Als[x]) =In (f(s[l(]|no error)> )
aP> (M—N 2
:lz—clg(T—f—zz—:z) > o (26)

Note that this test disregards the possibility that more
than one impulse error affected the syndrom within the ob-
served window. Thus the probability p; of an impulse error
has to be sufficiently low.

7. SIMULATION RESULTS

We simulated receiver operating curves (ROC) for the fol-
lowing case: The PR DFT filter bank has M = 8 subbands
and a decimation factor of N = 6. Two different linear-phase
prototype filters are considered, one with a length of L = 24
samples and one with a length of L = 48 samples. The two
prototype filters are shown in Figure 4.

prototype filters

Magnitude (dB)

Figure 4: Prototype filter frequency responses

The parity check polynomials C;(z) contain shifted poly-
nomials in z* and have 1 (2) non-zero coefficients per poly-
nomial for L = 24 (L = 48). An impulse error thus creates
a signature waveform of length L. = 8 (16). Thisis J =4
times shorter than using the approach from [13].

We use a complex input signal with zero mean and vari-
ance 62 = 1. The vector §[n] was obtained from y|n] by
adding complex noise according to the described channel
model. For all simulations we kept the variance of the im-
pulse noise at G[Z =1 and its probability of occurrence at
pi = 0.001. We varied the variance of the complex quantiza-
tion noise from Gg =0.001 to Gg = 0.1. Figure 5 shows the
resulting experimental ROC’s, where Pr and Pp denote the
false alarm and detection probability, respectively.

It can be seen that there is hardly any difference in perfor-
mance between the two prototype filters of different lengths.
Also, the larger the ratio G[Z / G[? the better is the perfor-
mance in terms of error detection. False alarms occur when
the quantization noise in absence of an impulse error causes
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Figure 5: Experimental ROC curves for M =8 and N =6

(26) to pass the threshold o. The reduction in the detection
rate with decreasing ratio Giz / Gg has two reasons: first, it is
more difficult to distinguish impulse errors from quantization
noise, i.e., the percentage of impulse errors with an amplitude
that is significantly higher than that of the background noise
reduces. Low amplitude impulse errors are not detected, but
need not to be corrected either, since they are harmless for
the reconstructed signal. Second, in presence of an impulse
error, the probability of determining an incorrect subband 7
in (24) increases.

Table 1 shows experimental results for the SNR in dB ob-
tained at the synthesis filter bank output using the prototype
filter of length L = 24. For ¢ = oo no impulse errors are cor-
rected. SNR, describes the SNR obtained in absence of im-
pulse errors, i.e. the best achievable case if all impulse errors
are corrected. For large « the error correction works nearly
perfectly. However, as o decreases, the increased false alarm
rate reduces the performance to a point where it is worse than
without impulse error correction.

ideal case error correction with o Gg
o [ 100 ] 50 | 20 [ 15 [ 10
SNR, =30 || 27 | 299|299 | 29.5] 29.0 | 28.3
SNR, =20 || 19.6 | 199 | 199 | 19.7 | 19.2 | 18.5

Table 1: SNR in dB with impulse correction for p; = 0.001.

8. CONCLUSIONS

In this paper we have presented a new approach to calculate
parity check polynomial matrices for oversampled DFT filter
banks. We have then applied it to the correction of impulse
channel errors and have shown simulation results. The an-
alytical calculation of ROC curves and the extension of the
presented framework to cases with a higher rate of impulse
errors is the focus of future research.
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