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ABSTRACT

In this paper, the problem of frequency estimation of a single si-
nusoid immersed in white noise is addressed. Inspired by the Pis-
arenko Harmonic Decomposer (PHD) estimator, which makes use
of the sample covariance of the observations with lags 1 and 2, we
propose a family of estimators using higher lags p and 2p of the
sample covariance. The proposed estimator outperforms the PHD,
except for frequencies close to the edges km/p. As a means to
sidestep this problem, two different estimators with different lags
can be appropriately combined. A statistical analysis of the pro-
posed method in terms of the Mean Square Error of the frequency
estimate is presented. Computer simulations are included to val-
idate the theoretical analysis of the novel estimator and to com-
pare its performance to that of PHD and to the Cramer-Rao Lower
Bound.

1. INTRODUCTION

Detection of sinusoidal components and estimation of their frequen-
cies in the presence of broadband noise are common problems in
signal processing with a broad range of areas of application [1], and
numerous techniques have been developed for their treatment [1, 2].

Among these methods, it is well known that the Maximum
Likelihood (ML) method is statistically efficient in the sense that
the estimator variance achieves Cramer-Rao Lower Bound (CRLB)
asymptotically, but its computational requirements is extremely de-
manding. In fact, this estimator requires the maximization of a
highly nonlinear and multimodal cost function [3, 4]. On the other
hand, simple estimators can be obtained using the LP of sinusoidal.
Among these, the Pisarenko Harmonic Decomposer (PHD) [5] is of
historical interest since it was the first to exploit the eigenstructure
of the covariance matrix. Although the PHD method constitutes
a simple approach to frequency estimation, a number of statistical
analysis have shown its inefficiency [6, 7].

A variety of alternative schemes have been developed to im-
prove the performance of PHD estimator. In [8], a Reformed PHD
estimator is derived, using the linear prediction property of sinu-
soidal signals. Also, in [9], alternative sample covariance expres-
sions for PHD estimator, which are inspired by the modified covari-
ance method, are derived. Although these two frequency estimation
methods are computationally simple, they are outperformed by the
original PHD method in the medium Signal to Noise Ratio (SNR)
range. On the other hand, a constrained weighted least squares fre-
quency estimator is presented in [10] which improves the perfor-
mance of the PHD estimator, but at the cost of extensive computa-
tions. This will be prohibitive in applications were rapid frequency
estimation is required.

In this paper we show that the performance of the PHD esti-
mator can be improved by using lags p and 2p in the sample co-
variance of the input signal. This approach results in a family of
unbiased schemes, which we refer to as p-estimators. A statistical
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analysis shows that the p-estimator outperforms the original PHD
method (corresponding to p = 1) except in the case where the un-
known frequency is close to the ‘edges’ kn/p fork=0,1,...,p. In
order to avoid this edge problem, we propose using a weighted sum
of two p-estimators with different lags. The expression of the Mean
Square Error (MSE) of the resulting estimate is developed.

The paper is organized as follows. In Section 2, the formal
statement of the single-tone frequency estimation problem is given
and the PHD estimator is reviewed. In Section 3, the family of p-
estimators is introduced and its performance is analyzed in terms of
MSE, showing the corresponding edge problem. A possible fix to
this problem is presented in Section 4. Numerical examples are pre-
sented in Section 5 to validate the theoretical results, comparing the
performance of the proposed estimator to that of the original PHD
scheme and the CRLB. Finally, conclusions are drawn in Section 6.

2. PROBLEM FORMULATION AND PHD ESTIMATOR

Consider the problem of estimating the unknown frequency w of
a real-valued sine wave s(n) immersed in white noise u(n). The
observed signal, y(n), is given by:

s(n) +u(n) ¢))
1<n<N,

y(n) =
= osin(wn+ @) +u(n),

where « is the sinusoid amplitude, ¢ is a random phase uniformly
distributed in the interval [—7, [, u(n) is a zero mean white noise
with variance 62 and N is the number of observations. We assume
that u(n) is independent of s(n). The SNR is defined as SNR =
o?/(20).

The PHD estimate [5, 6, 7] is obtained in terms of the unit-norm
eigenvector [vg v v2]T corresponding to the smallest eigenvalue of
the 3 x 3 sample covariance matrix:

#(0)

#(1)

#2)
where 7(7) denotes the lag-T sample covariance coefficient of the
signal y(n), given by:
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which, is an unbiased estimate of the true coefficient r(7) =
E{y(n)y(n — 7)}. The corresponding eigenvector is symmetric
(v2 = vp), and the frequency estimate is taken as the angular po-
sition W of the zero of the transfer function vy + vz~ 4+ vz =2 [6]:

W:mCOS(mH ?2(2)—1—8?2(1))' 3

47 (1)

Alternatively, this estimator can be obtained directly by matching
the theoretical and sample covariance coefficients of lags 1 and 2
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[11]. The former are given by:

o2
(1) =028 + > cos(wt). 4)

Hence, eliminating the unknown amplitude & from the expressions
of r(1), r(2) the following equation is obtained:

2r(1)cos?w —r(2) cosw —r(1) = 0. Q)

After replacing r(1), r(2) by their estimates #(1), #(2) in (5), we can
solve for the frequency value, thus obtaining the estimate w in (3).

3. EXPLOITING HIGHER-ORDER SAMPLE
COVARIANCE LAGS

3.1 p-estimator

In this section, we show how the performance of the PHD estimator
can be improved by using lags p and 2p of the sample covariance.
From (4), for p > 1 one has:

2 2

o r(2p) = % cos(2pw).  (6)

r(p) = > cos(pw),

Eliminating now the unknown amplitude o from these two equa-
tions and substituting cos(2pw) = 2cos?(pw) — 1, the following re-
lation is obtained:

2r(p) cos®(pw) — r(2p) cos(pw) — r(p) =0. ©)

Similarly to the PHD estimator, we can replace r(p), r(2p) by their
sample estimates 7(p), #(2p) in (7), and then solve for the frequency
estimate W. In this way, we obtain a family of estimators as follows:
1. Compute the sample covariance coefficients 7(p), #(2p).

2. Solve for W in f, (W) = 0, where:

fp(9) =2#(p) cos® (pw) — #(2p) cos(p) = #(p).  (8)
When p = 1, we recover the original PHD estimator (3).

Observe that (8) has p solutions in [0,7]: In fact, solving
fp() = 0in terms of & = cos (pW), one obtains:

(2p)+

#(2p) +8#(p)
#(p) '

a=

&)

N

Hence there exist p possible solutions 1y, for the frequency estimate,
namely:

1 2k
vfzszarccos(d)+—n for k=0,....,p—1. (10)
p p

A possible means to resolve this ambiguity is to use the p =1 (i.e.
PHD) scheme as a first step, in order to obtain a coarse estimate
Weoarse- Then the solution Wy in (10) that is closer to Weoarse 1S Se-
lected, thus obtaining a refined estimate.

In the following, we refer to the estimator using lags p and 2p
of the sample covariance of y(n) as p-estimator, and denote the cor-

responding estimate as w(?).

3.2 Performance analysis and edge problem
In order to study the statistical properties of the frequency estimate
Ww(P), related to the estimate 4() by a(P) = cos(pw(?)), we derive
first the expression of the MSE of al).

The estimate @(?) must satisfy:

Fiv (a“’)) = 27(p) (a<l’>)2 —p2p)a® —#(p)=0.  (11)

For sufficiently large N, a small error approximation applies.
Hence, a first-order Taylor expansion of Fy (&(”)> around a(P) =
cos(pw) yields

Fy (@(p)) ~ Fy (a(p)) B (@(p) —a<”)> : (12)
where  9[Fv(a)
ﬁ o 8a a=ap)

The terms neglected in (12) go to zero faster than ’d(”) —alp) ‘ when

N tends to infinity.

It is important to note that the following analysis holds only if
N —2p is sufficiently large. In this condition, using the weak law of
large numbers, the evaluation of 8 shows that:

2

B 0‘7 (2 <a<p>)2+1). (13)

Then, it follows from (11) and (12) that:

MSE (a0 = E{(ﬁ<1’) _aw)z} ~E{F} ()} /82

The evaluation of the numerator E [F ]6 (a(m)] is done in Appendix

A, where it is shown that, for N —2p large enough,

E{Flﬁ <a<P>>} ~ S (14

Therefore, MSE (&(")) satisfies:

<4 ()’ -3 (a<p>)2+1) |

N-SNR? (2 (a<1>>)2+1)2

MSE (a@)) ~ (15)

On the other hand, the relationship between the mean square errors
in the estimation of a(P) and w satisfies:

e { (oo (p5) - cos ()}

MSE (a(P>>

Il
~
[es]
2.
=1
<1
1=

Q

P sin? (pw)E { <W(p) _ W) 2} .

Therefore, we have:

2 MSE ( a(P)
MSE(37) = E{(W) ) } = # (16)
p2sin? (pw)
From (15) and (16), the expression of MSE (W(p)) is obtained:
4 _ 2
MSE (W(P)) ~ 4cos” (pw) —3cos” (pw) + 1 -

Np2SNRZsin? (pw) (2cos? (pw) + 1) -

For p = 1, this expression coincides with a known approximation
for the MSE of the PHD estimate [6]. The two important differences
between the MSE of the p-estimator and that of the PHD are:
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Figure 1: MSE (w<1’>> versus N, w = 0.4, SNR=10 dB, p = 2.

e The frequency variable w is replaced by pw. Due to the fac-
tor sinz(pw) in the denominator of (17), performance can be
expected to degrade at the ‘edge frequencies’ w = kx/p, k =
0,1,...,p. This is a known effect for the PHD estimate, whose
performance is poor when w =0 or w = 7.

e A factor of p? appears in the denominator of (17). This suggests
that, as long as the unknown frequency is not close to one of
the edge frequencies, the p-estimator may outperform the PHD
method. Of course, if p is increased so as to reduce the MSE,
the number of edge frequencies will increase as well, and the
minimum distance between the true frequency w and an edge
frequency k7/p will decrease.

Computer simulations have been carried out to evaluate the per-
formance of the p-estimators for a single real sinusoid in white
Gaussian noise. The sinusoid amplitude is taken as ot = /2 and
a random phase is used, whereas different SNRs were obtained by
properly scaling the noise variance 0'3. All simulation results were
averaged over 1000 independent runs.

In order to validate the theoretical MSE (17), Fig. 1 shows the
empirical MSE of the frequency estimate and the theoretical ap-
proximation (17) as a function of N, for p =2, SNR=10 dB and
w = 0.47w. A good agreement is observed for a sufficiently large
value of N.

Fig. 2 shows the variation of MSE(#(?)) with frequency for
SNR=10 dB, N = 1000, and 1 < p < 4. The theoretical and the
empirical MSE agree reasonably well. As predicted by the analysis,
a noticeable improvement can be achieved compared to the PHD
estimator except for the frequencies close to the edges kn/p for
k=1,...,p— 1. We also note that the higher the order p, the better
the performance of the p-estimator for the frequencies far from the
edges, whereas the edge problem becomes more severe.

4. ESTIMATOR USING INFORMATION FROM TWO
P-ESTIMATORS

In order to alleviate the edge problem, we note that the use of two
p-estimators with consecutive lags p and p+ 1 permits to detect
accurately all frequencies by at least one of the two p-estimators
(with exception of frequencies very close to w = 0 or w = 7). This
solution provides two possible frequency estimates, so the question
that arises is how to use these two p-estimators in order to come
up with a single estimator W with good behavior in terms of MSE.
One possibility is to obtain W by means of a weighted sum of the

individual estimates w(?) and w(P*1):

W= g + WPt with o+ = 1. (18)

O  Experimental MSE (p=1)
10 +  Experimental MSE (p=2)
Experimental MSE (p=3)
% Experimental MSE (p=4)
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Figure 2: MSE (W’)) versus w, N = 1000, SNR=10 dB.

The condition (uy+ t; = 1) ensures that the weighted sum estimate
is unbiased.

We assume that the estimation errors w() — w and w(PT1) —
are uncorrelated. Under this assumption, the MSE of the frequency
estimate w is evaluated as

1
MSE(%) ~ Y u?MSE <w<l’+’<>). (19)
k=0

The optimal values of the weights t, in the sense that they mini-
mize (19), are given by:

MSE~! (w(1’+k>>
W = . for
Y MSE™! ()
=0

k=0,1. (20)

Since w is unknown, the exact values of MSE (W(P+k>>, given

by (17), are not available. We propose to use the estimates WPtk
instead of w in order to obtain an approximation to the optimal
weights (1. We refer to the proposed weighted sum estimator as
{p,p + 1}-estimator, and the corresponding frequency estimate is
denoted by:

1
wep+l) — Z ’u]jw(PJrk). @D
k=0
The mean-squared error associated to the {p, p + 1}-estimator is
given by:

1 1
~ NSNRZh(p,w)’

MSE(wPP+1) ~ (22)

1
Y MSE~! (w(P0)
k=0

where

N ! sin? ((p+k)w) (2cos?((p+k)w) + 1)2
hpw) = kg)(p+k)24cos4((p+k)w) —3cos((p+kw)+1"
(23)

5. SIMULATION RESULTS

To study the performance of the {p, p + 1}-estimator, we consider
the same simulation conditions as in Section 3.2.

In Fig. 3, we compare the performance of the {p,p+ 1}-
estimator to that of the individual p-estimators. We evaluate the
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MSE of the frequency estimate versus w for N = 1000 and SNR=10
dB with p = 2,3. Besides the unavoidable degradation near the
endpoints w = 0 and w = 7, these constituent p-estimators vfz<2),
W) present an edge problem at w = 7/2 and w € {7/3,271/3} re-
spectively. Using the {p, p+ 1}-estimator with p = 2, this problem
is avoided: the novel proposed estimator consistently outperforms
the PHD estimator over the whole frequency range. In Fig. 3, ex-
pression (22) is plotted as well in order to check the validity of the
theoretical MSE of the {p, p + 1}-estimator. It can be seen that the
empirical MSE agrees well with the theoretical value from (22).

Fig. 4 shows the behavior of MSE(#(P1)) in terms of p for
different sequence lengths N. The frequency w is fixed to 0.47,
whereas SNR=10 dB. As can be seen, when N = 100, a lag of
p =20 is required to attain the minimum of MSE(#(”?*1)), which
implies that no noticeable improvement in performance is achieved
if higher lags are employed. We also note that the higher N is, the
higher is the lag p required to minimize MSE(#(-P+1)).

Fig. 5 displays MSE(w(?»1)) versus w for N = 100 and
SNR=10 dB, using a lag p = 20, together with the ML estimator
and the CRLB for frequency estimation of a single sinusoid in ad-
ditive Gaussian noise [12]:

24672
N3o?’

MSE; (W) = (24)

In addition to outperforming the PHD scheme, the {p,p + 1}-
estimator performance approaches the ML and the CRLB for w €
[0.12,0.88]7. In view of this, This result indicates the potential of
the the {p, p+ 1}-estimator becomes an appealing choice with short
data records in high SNR.

Fig. 6 shows the behavior of MSE(3”?+1) with p for different
SNR levels, using N = 100 and for w = 0.47. It is seen that the
adequate choice of lag p depends not only on the sequence length
N but also on the SNR level: the higher the SNR level, the higher
the optimum lag p for a given N. In fact, using the PHD estimator
to obtain Weoarse provides an inaccurate first frequency estimate in
low SNR environment, and thus it becomes more difficult to resolve
the inherent p-fold ambiguity in (10) for large values of p. This
shows that, in low SNR settings, the performance of the {p, p+ 1}-
estimator is sensitive to the choice of the initial estimate Weoarse -

Fig. 7 plots MSE(w(P7*1)) versus SNR for different lags p,
with N = 100 and for w = 0.47. It is observed that with a low
lag p =2, the {p, p+ 1}-estimator outperforms the PHD estimator
even in low SNR environments. In addition, the proposed estimator
approached the ML and the CRLB for SNRe [7.5,20] dB, when
using a high lag p = 20. Hence some tradeoff is needed in the
choice of p, depending on the expected operating SNR.

Fig. 8 displays MSE(w(P?t1)) versus w for N = 100, SNR=0
dB and p =2. Itis seen that the proposed estimator still yields better
performance than PHD, even in this short record, low SNR level.

From Figs. 3—8, we can conclude that the {p, p+ 1}-estimator
is superior to the PHD estimator and can achieve very good estima-
tion performance. It can approach the CRLB with short data lengths
when the SNR is sufficiently high.

6. CONCLUSION

In this paper, we derive a family of estimators, referred to as to
p-estimators, which uses the sample covariance with lags p and
2p of a noisy sinusoid to estimate its unknown frequency. Since
the p-estimator presents an edge problem, a solution is presented
taking information from two p-estimators with consecutive lags,
an approach referred to as {p, p + 1}-estimator. The performance
of the {p, p+ 1}-estimator is theoretically analyzed and evaluated
via computer simulations, which showed its superiority over Pis-
arenko’s method, approaching in some cases the CRLB with high
SNR.

These results motivate the extension of the proposed estimator
to the case of colored noise, since using high lags in sample

O  Experimental MSE of PHD

L +  Experimental MSE of p-estimator (p=2)
—1d’ Experimental MSE of p-estimator (p=3) a
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Theoretical MSE of {p,p+1}-estimator (p=2)
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Figure 5: MSE(w(P"P*1)) versus w, p = 20, N = 100, SNR=10 dB.

covariance permits to decorrelate the noise components.

Appendix A
Evaluation of E{F}2 (aP)}

The derivation of (14) is as follows. From (11), it is easy to show
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Figure 8: MSE(w(PPt1)) versus w, p = 2, N = 100, SNR=0 dB.

that:

E{F§(a\?)}

= [1-2(a)’PE{#(p)} + (aP)2E{#*(2p)}
+2aP) (1 -2(aP))2)E{#(p)#(2p)}.

For sufficiently large N — 2p, the terms E{#*(p)}, E{#*(2p)} and

E{#(p)?(2p)} are approximately given by:

E{F

E{f(p)i(2p)} =~

4aPN2  20262(aP))2 4
2(pyp LT 20O
p N—-p
4 (P2 _1)2 2.2 (Y2 _1)2 4
2o & O 2@P) 1) 2070,(2(a)"—1)° o,
E{7(2p)} ~ y) N2 -2
a*alP) (2(alP))?—1)  20%062aP(2(aP)? 1)
4 N-—p

Therefore, (14) is obtained asymptotically:

E{FN(a(f’))z} ~ o +

(1]
[2]

(3]

(4]

[5]

[6]

(7]

(8]

(9]

[10]

[11]

[12]

(2(0("))2 - 1>2 (a(P))?
N-2p

N-p

20705 p(al?)?(2(aP))? —1)?

(N—=p)(N—2p)
ol (4(a(p))4 ~3(a?)2 4 1)
= N
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