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ABSTRACT

This paper studies coordination and consensus mecha-
nisms for Wireless sensor networks in order to train a Sup-
port Vector Machine (SVM) classifier in a distributed fash-
ion. We propose two selective gossip algorithms, which take
advantage of the sparse representation that SVMs provide for
their decision boundary (hyperplane), in order to ensure con-
vergence to an optimal or close-to-optimal classifier, while
minimizing the required amount of information exchange
between neighboring sensors. The first proposed algorithm
calls for the local exchange of support vectors between sen-
sors, while the second technique requires the exchange of
all sample vectors that define uniquely and completely the
convex hulls of the two classes. Through simulation experi-
ments, we show that the proposed algorithms achieve a con-
sensus close to the desired hyperplane obtained with a cen-
tralized SVM-based classifier that uses the entire sensor data.

1. INTRODUCTION

As the research field of mobile computing and communica-
tion advances, so does the idea and the need of deploying
a distributed, ad-hoc wireless network of hundreds to thou-
sands of microsensors, which can be randomly scattered in
the area of interest. Wireless sensor networks (WSNs) enable
a variety of new applications such as environmental monitor-
ing, warehouse inventory tracking, location sensing, patient
and structural health monitoring. Moreover, in the near fu-
ture, the development of visual sensor networking technol-
ogy employing content-rich vision-based sensors will require
efficient distributed processing for automated event detection
and classification.

The fact that data are collected by sensors at geograph-
ically distinct locations necessitates the design of intersen-
sor communication and local information processing, while
keeping energy consumption low. One of the most impor-
tant tasks to be performed in a WSN, is classification, that
is, it is important to infer whether the samples measured by
sensors in a WSN belong to a certain hypothesis (class) or
not. It is well known that Support Vector Machines have
been successfully used as classification tools in a variety of
areas [1, 2, 3]. Various incremental algorithms have been re-
cently proposed [4, 5, 6, 7] for training a SVM. The key idea
in all of them is to preserve only the current estimation of the
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decision boundary at each incremental step along with the
next batch of data (or part of it).

A disadvantage of these techniques is that they may give
only an approximate solution and may require many passes
through the whole data set to reach a reasonable level of con-
vergence. In principle, all working methods used to train
SVMs, especially shrinking [8], use only a small part of the
samples for optimization in each step. This is because in all
these methods, none of the samples are discarded during the
training and thus all of them have to be considered in each
working set selection step. As a consequence, both the mem-
ory and the power required are too high to be used in WSNs.

In our previous work [9, 10], we proposed two energy-
efficient algorithms that involve a distributed incremental
learning for the training of a SVM in a WSN. In all incre-
mental techniques, the update of the estimate is diffused se-
quentially in the network and the convergence to the global
estimate is reached at the final step of the algorithm. Hence,
at each time slot only one node has the updated critical infor-
mation and consequently the optimal estimate. In this case,
the trained SVM classifier is constructed at the final step of
the algorithm. However, nodes in a WSN, usually operate in
environments that are prone to link and node failure. Hence,
it is important to design algorithms that are robust to unex-
pected failures of nodes and consequently to changes in the
topology. Thus, to maximize robustness, all nodes should
ideally achieve convergence to the same optimal estimate.

Distributed consensus is broadly understood as agents
(sensors) achieving a consistent view of the state of nature
by interchanging information regarding their current state
with their neighbors. Motivated by applications to sensor
networks, gossip algorithms have been studied, for compu-
tation and information exchange in an arbitrarily connected
network of nodes. Exhaustive research has been made mostly
on the averaging problem, where each sensor updates its lo-
cal estimate by appropriate weighting the estimates of its
neighbors [11, 12]. Gossip algorithms are typically based
on iterative schemes, whose energy consumption is propor-
tional to the time necessary to achieve consensus and hence
the topology of the network [13].

In this paper, we use an inherent characteristic specific to
SVMs to propose two distributed consensus algorithms for
the efficient training of SVM classifiers in WSNs. Namely,
we use the property that the decision hyperplane of a SVM
is completely specified by a small fraction of the whole data
vectors, the so-called support vectors. In the first scheme,
each sensor updates its hyperplane at every iteration by com-
bining its support vectors with the support vectors commu-
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nicated by the neighbors. This results in a close-to-optimal
efficient distributed scheme. In a second approach, the infor-
mation exchanged between sensors describes uniquely and
completely the convex hulls of the two classes. The paper
is organized as follows. In Section 2, we provide a brief
description of SVMs. Section 3 presents the two proposed
selective gossip algorithms. Finally in Section 4, we illus-
trate a set of simulation experiments in order to assess the
performance of our proposed approaches.

2. SUPPORT VECTOR MACHINES

Given a training set S = {(x;,y;)}/_,, support vector learn-
ing tries to find a hyperplane, determined by a vector w with
minimal norm and an offset vector b, that separates the train-
ing data {x;} into two classes denoted by y; = {—1,+1}.
Let SVM = {w,b} denote the separating hyperplane. To find
such a hyperplane, one must solve the following quadratic
problem [14]:

. 1 1
mind(w,£) = 5 || w|* +C 34 M
v =
subject to
yi((w,x;)+b) > 1-¢& and
& > 0, for i=1,2,..n

where b determines the offset of the plane from the origin,
the set of variables {;}_ | measures the amount of violation
of the constraints, and C is a parameter that determines the
cost of constraint violation. The vector of minimal norm w
representing the resulting separating hyperplane is given by:
i
W = 0,yiXi (2)
i=1

which is expressed by means of a linear combination of
the so-called support vectors, i.e., the training sample vec-

tors {x;}._, corresponding to the / non-zero Lagrange mul-

tipliers {Oti}le , calculated during the optimization process’.

In practical settings, the number of support vectors is usu-
ally quite small compared to the number of training samples
(I << n). The decision function for classifying a new point
x can be easily written as

I
f(x) = sign (Y, yiou(x,xi) +b) 3)
i=1
and the corresponding decision rule can be expressed as fol-
lows: a new test vector x belongs to class 1 when f(x) >0
while x belongs to class —1 when f(x) < 0.

Geometrically, the discriminant can be found by exploit-
ing the convex hull of the training data corresponding to each
class. The convex hull of a set of points is the smallest convex
set containing the points. More specifically, since there are
many planes that separate two classes, the best is considered
to be the “furthest” from both classes [14]. One can exam-
ine the convex hull of each class’ training data and then find
the closest points in the two convex hulls. In Figure 1, the
measurements are depicted in two dimensions and the closest
points in the convex hulls are the circles labelled as ‘d’ and
‘c’. The classifier is the plane that bisects these two points
(w=d-c). In Figure 2, support vectors are depicted with the

'Notice that for simplicity, we assume that the sample vectors are enu-
merated such that the support vectors correspond (in any pre-agreed order)
to the first / sample vectors.

circled dots; only these three vectors correspond to the only
non-zero Lagrange multipliers resulting from the solution of
the optimization problem 1 and therefore are sufficient for
the construction of the discriminant in (2).
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Figure 1: Best plane bisects closest points in the convex
hulls.

o 5o
/. o O o .
(O] @ L
. O O
© o ©
werz-balgy ”

. T
Supportvecto

woxtb=1."

wertb=-1
Support planes

Figure 2: Support Vectors (three circled dots) are sufficient
to construct the best plane that separates the two classes.

3. SELECTIVE GOSSIPING FOR SVM TRAINING

Let us consider a deployment of # sensors taking measure-
ments in a certain area. Our goal is to be able to train a SVM
in an efficient and distributed fashion so that: a) we can get
good classification results on test data, b) all sensors keep re-
fining their estimate concurrently at each time slot in order
to reach finally convergence (consensus) to a common global
estimate.

In this work, we use gossip algorithms in the context of
a SVM. There is a successive refinement to the estimate of
each sensor based on communicating information with one-
hop neighbors only. Therefore, at each time slot, the new
estimate is diffused to the next-hop neighbors and finally at
some point all sensors will reach a consensus. Hence, all
sensors in the network converge to the same trained SVM
classifier, and can classify any new measurements.

The question at this point is what kind of data should
neighboring sensors exchange in order to get high classifica-
tion accuracy but with low energy consumption? WSN nodes
should exchange a sufficient amount of data in order to en-
sure or approximate optimality. On the other hand, the more
data is exchanged, the more energy is consumed. The trade-
off between optimality and energy consumption led our re-
search to two different algorithms: a) the Minimum Selective
Gossip algorithm (MSG-SVM) where the minimum amount
of data is selected for diffusion and b) the Sufficient Selec-
tive Gossip algorithm (SSG-SVM) where sufficient data is
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Algorithm MSG-SVM
Initialize {SV(0)}", by training SVM
for all sensors with k initial measurements

For t=0,1,2,... do
All i=1,2,...,n construct wi(t)
All i=1,2,...,n transmit the SVi(t) to neighbors Nj, Eq.(5)
All Ni update their data
All i=1,2,...,n update wi(t+1) with current data
End for

Figure 3: MSG-SVM algorithm.

diffused to achieve optimality, that is, same performance as
a global centralized algorithm. The proposed algorithms are
analyzed in Sections 3.1 and 3.2, respectively.

3.1 Minimum Selective Gossip Algorithm (MSG-SVM)

Communication links in the WSN comprised of » sensors,
are represented by a graph whose vertices are the sensors
and whose edges are formed by the available communica-
tion links. The set of sensors having an active link with the
i-th sensor are denoted as the neighborhood ;. The WSN
is deployed to train the SVM using the distributed measure-
ments M;(0) := {x;;(0)}7_,, where 1 < j <k and k is the
total number of measurements acquired by sensor node i.
We begin by taking & measurements at each node i and
then training the SVM locally (for each sensor). The first es-
timate of the hyperplane is denoted by w;(0), i =1,...,n,
for each node i. When training a SVM, only the support vec-
tors determine the discriminant that separates the data col-
lected by each sensor in two classes [14]. Therefore, the data
of each node can be compressed to their corresponding esti-
mated hyperplane and thus to the associated support vectors:

SVi(0) = {x(0) : Z%‘yixi(o) =w;(0),
yvi=class{1,—1}, o; # 0}. @)

In general, it holds that | SV;(0) |<<| M;(0) |, where
| S7:(0) | and | M;(0) | denote the cardinality of S¥;(0) and
M;(0), respectively [9].

Our proposed MSG-SVM algorithm is a gossip-based al-
gorithm, where the support vectors SV;(0) are communicated
between one-hop neighbors. Therefore, for each node i, at
time 7 + 1, we update its estimate w;(¢ + 1) by using all the
information available at that moment, namely, the previously
estimated set of support vectors S¥;(¢) at node i, as well as
the union of the sets of support vectors SVy;, (¢) that have been
previously estimated by the neighbor nodes. Notice that once
we decide (at a given step 7 4 1) what is the new set of support
vectors SV;(¢ + 1) at a given node i, this determines uniquely
the corresponding estimate of the hyperplane w;(¢ + 1), so
there is a one-to-one mapping. The algorithm is described in
Figure 3.

The proposed algorithm seems well suited for the dis-
tributed training of a SVM in a WSN. To begin with, MSG-
SVM is concurrent for each sensor, so finally all » sensors
get the measurements that are characterized as support vec-
tors in the » sub-problems. Hence all sensors converge to

the same discriminant constructed by those support vectors.
Therefore, WSN nodes converge to the same trained SVM
classifier, and can classify any new measurements. Addi-
tionally, it is an energy efficient algorithm since in order to
reduce the energy consumption, each sensor transmits to its
neighbors only the support vectors that have not been trans-
mitted in previous steps.

On the other hand, it can be shown that MSG-SVM pro-

vides a sub-optimal discriminant hyperplane, with respect
to a global centralized algorithm, while communicating the
minimum necessary information at each step. As we already
mentioned, the data of a node can be compressed to their cor-
responding support vectors. But it cannot be guaranteed that
a vector x such that x € M;(¢) and x ¢ SV;(¢), is not a support
vector in M;(t+ 1) = {M;(t) UU,en,M;(t)}. In other words,
at each step, the set of support vectors associated with the
entire data set is not always the same as the overall union of
the support vectors obtained after training separately each of
the two sets.
Lemma: The MSG-SVM algorithm is sub-optimal, that
is, the consensus achieved by training the SVM using
only the support vectors from each of the sub-problems is
sub-optimal.

Proof: We only need to find a case where a support vector
in the training set is not a support vector in any sub-problem.
Consider the case of a network comprised of only two sen-
sors collecting measurements in two dimensions. Sensor 1
collects a set of measurements S; and the other one collects
a set of measurements S,. For the geometrical aspect of this
problem, we need to find a vector in the union of the mea-
surements of both sensors § = S; US that is a support vector
in S, but neither in set S; nor in set S;. Let the smallest dis-
tance between the two convex hulls of set S} be d; and the
corresponding distance of set S, be dy, (Figure 4). The con-
vex hull of one class of set S is the smallest set that contains
the measurements of set S, hence it also contains the convex
hulls of the same class of sets S and S,. As a counter exam-
ple one can find a point in the convex hull of set S that is a
support vector but it is not a support vector in Sj nor in S5. In
Figure 5, the squared point is a support vector in S but neither
a support vector in S; nor in S, since the distance between
the convex hulls is d, where d < d; and d < d}.

Figure 4: The closest distance between the two dotted convex hulls
of Sy is d;. Thus, the circled points on the boundary of the convex
hulls are the support vectors in set S7. The closest distance between
the two dashed convex hulls of S, is d». Thus, the circled points on
the boundary of the convex hulls are the support vectors in set S,.

3.2 Sufficient Selective Gossip Algorithm (SSG-SVM)

We propose an alternative algorithm, the Sufficient Selective
Gossip Algorithm (SSG-SVM), in order to eliminate the pos-
sibility of not converging, such as in MSG-SVM, to the opti-
mal solution. Each sensor sends the amount of data to the
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Figure 5: The convex hull depicted in solid line is the convex hull
of set § = 8] US,. The squared point on the convex hull is a support
vector in S, since it is one of the closest points between the two
convex hulls. Notice that this is not a support vector in S nor in S;.

1 2 3 4 5

6 7 8 9 10

Figure 6: The sensor network is composed of » = 10 nodes
distributed in a grid topology. The communication links for
each sensor are depicted with arrows.

one-hop neighbors that guarantees convergence to the op-
timal solution. Which is the sufficient amount of data that
sensors should exchange to converge to the optimal solution
while training a SVM?

We can exploit the geometrical description of a SVM
training, illustrated in Figures 1, 2. We examine the convex
hull of the training data of each class, and construct the plane
that bisects the two closest points of the convex hulls, [14].
This is an alternative equivalent perspective for training a
SVM. The closest points can be found by solving the fol-
lowing dual quadratic problem:

1 5
min> [|c—d| )

C = 2 O;X;, d= Z oiXj,
yi€class 1 yi€class —1
subject to
Zy,-edass 106 = 1, Ey[edass —1 0 =1
o > 0fori=1,2,..n.

SSG-SVM takes advantage of the geometrical property
of the SVM discriminant hyperplane. The sufficient amount
of data for the hyperplane construction are the vectors that
lie on the boundary of the convex hulls of the two classes.
For each node, the SSG-SVM discards all the vectors of the
WSN nodes, except those located at the boundary of the con-
vex hulls. Thus, neighboring sensors exchange the sufficient
data only. After some communication, all WSN nodes have
the information to construct a separating plane identical to
the plane that would have been constructed if all sensors had
access to the entire information.

Both algorithms are energy efficient, since data need not
be transmitted to a fusion center and the amount of data ex-
changed by sensors is substantially smaller than the overall
generated data. Instead, WSN nodes diffuse partial informa-
tion to neighboring sensors. Furthermore, each node com-
municates only information that has not been sent previously,
thus the energy spent for transmission is reduced.

4. RESULTS AND DISCUSSION

In this Section, we evaluate the performance of the two pro-
posed distributed algorithms in terms of the average classifi-
cation error rate and we compare them to the ideal case where
WSN nodes have access to the entire information.

We consider a sensor network composed of # = 10 nodes
distributed in a grid topology, where each sensor i, i =
1,...,10, collects | M;(0) |= 14 sample vectors from two
classes, at each step. WSN nodes communicate with their
one-hop neighbors. The communication links between the
sensors in the network are depicted in Figure 6. In our exper-
iments, we generate three sample data sets of two different
classes each, using Gaussian distributions with two differ-
ent means. We choose three data sets, such that their Maha-
lanobis distance is increasing, Figure 7.

We simulated 100 Monte Carlo runs in order to test the
performance of the two proposed Selective Gossip Algo-
rithms. Figure 8 represents the average classification error
rates (%) for a randomly chosen sensor, as a function of the
iteration steps. After only a few iterations, both algorithms
result in trained SVM classifiers which exhibit similar per-
formance to a centralized SVM trained using the entire data
from all sensors. SSG-SVM gives an optimal estimate of
the discriminant after at most 8 iterations using only partial
data. The small divergence of SSG-SVM from the optimal
solution (only 2% on average), can be diminished by tuning
the parameters of the optimization problem (1). On the other
hand, even though MSG-SVM is a sub-optimal solution, it
gives a good approximation of the optimal separating plane.
Most importantly, with both introduced distributed schemes,
all »n sensors reach, with a small finite number of steps, an
agreement on the nearly optimal discriminant function. Both
proposed algorithms behave similarly for all data sets.

The results also show that the difference in performance
between MSG-SVM and SSG-SVM is very small. This hap-
pens because sensors collect measurements from the same
distribution. Therefore, it is very rare to encounter the case
where a measurement that is not a support vector in the data
set of one sensor, happens to be a support vector in a set con-
taining data from all sensors. In other words, the counter
example in Figure 5 is actually an event of low probability;
however, such an event may occur more often in scenarios
where the class distributions are time-varying.

Moreover, we have also analyzed the trade-off between
classification accuracy and energy consumption. Figure 9 il-
lustrates the number of measurements that a particular sensor
(tested in data set 2) transmits to its neighbors at each itera-
tion. MSG-SVM gives a sub-optimal solution but uses less
measurements than SSG-SVM, thus less energy. SSG-SVM,
on the other hand, transmits more data at each iteration, in
order to ensure optimality. One can notice that after 5 itera-
tions, in both algorithms, nodes do not need to send any more
measurements to their neighbors. After gossiping in the net-
work, WSN nodes have exchanged in previous steps all the
necessary measurements. Hence, only after a few iterations
sufficient amount of data has been diffused to all WSN nodes,
each of whom can construct the same trained SVM with the
minimum classification error.

5. CONCLUSIONS

In this paper, we propose distributed selective gossip algo-
rithms for training a SVM in a Wireless Sensor Network.
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Figure 7: The representation ellipses of different data sets generated by Gaussian distributions.
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Figure 8: Performance, at a given particular sensor, of the
training algorithms for three different data sets. SSG-SVM
gives an optimal estimate of the discriminant after at most
4 iterations. MSG-SVM is a suboptimal solution but gives
a good approximation of the optimal plane. The ideal case
where sensors have access to the entire data is depicted by
the straight line.

We introduce two distributed algorithms for training a SVM
based on successive refinement of local estimates. In both
cases, information is communicated to one-hop neighbors
in order to update the estimate at each iteration. The sub-
optimal algorithm MSG-SVM, uses only the support vectors
of each node to reach an agreement. The SSG-SVM, on the
other hand, communicates larger amount of data, i.e., vectors
lying on the convex hull boundaries, but converges closer to
the optimal solution in a few iterations.
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