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ABSTRACT

This paper presents a new technique for segmenting an
audio stream into pieces, each one contains speeches of only
one speaker. Speaker segmentation has been used exten-
sively in various tasks such as automatic transcription of
radio broadcast news and audio indexing. The segmentation
method used in this paper is based on a discriminative dis-
tance measure between two adjacent sliding windows oper-
ating on preprocessed speech. The proposed unsupervised
detection method which does not require any pre-trained
models is based on the use of the exponential family model
and 1-SVMs to approximate the generalized likelihood ratio.
Our 1-SVM-based segmentation algorithm provides improve-
ments over baseline approaches which use the Bayesian Infor-
mation Criterion (BIC). The segmentation results achieved
in our experiments illustrate the potential of this method in
detecting speaker changes in audio streams containing over-
lapped and short speeches.

1. INTRODUCTION

Speaker segmentation has been generally referred to as
speaker change detection and was closely related to acoustic
change detection. For a given speech/audio stream, speaker
segmentation/ change detection systems find the times when
there is a change of speaker in the audio [1, 2, 3]. Detection
of speaker changes is a crucial element of speech recogni-
tion and speaker recognition engines. Besides improving au-
tomatic speech recognition systems, audio segmentation is
also useful in many other interesting practical applications
such as content based audio classification and retrieval, audio
archive management, surveillance, etc [4, 5, 6].

Recently, three main domains of application for speaker
segmentation have received special attention [5] :

e Broadcast news : Radio and TV programs with vari-
ous kinds of programming, usually containing commercial
breaks and music, over a single channel.

e Recorded meetings: meetings or lectures where multiple
people interact in the same room or over the phone. Nor-
mally recordings are made with several microphones.

e Phone conversations: single channel recordings of phone
conversations between two or more people.

The BIC is probably the most extensively used model-
selection segmentation method due to its simplicity and ef-
fectiveness. Several speaker segmentation approaches using
BIC have been proposed. Initially, in [1] a multiple chang-
ing point detection algorithm was proposed. Then, [3, 7]
present one or two-pass algorithms using a growing window
with inner variable length analysis segments to iteratively
find the changing points. In [8], some ways to make the
algorithm faster were developed. Even with the efforts to
speed up the processing of BIC, it is computationally more
intensive than other statistics-based metrics when used to
analyze the signal with high resolution, but its good perfor-

mance has kept it as the algorithm of choice in many appli-
cations. This is why some people have proposed a hybrid
approach in which BIC is used as the second pass (refine-
ment) of two-pass speaker segmentation system [4, 9, 10].
As described earlier, an important step in this direction is
taken with the use of Hotelling’s 72 distance as a first step
for detecting short speaker changes [10, 6].

The main focus of this paper is to introduce a new unsu-
pervised speaker segmentation technique robust to different
acoustic conditions. In most commonly used model selection
segmentation techniques like BIC segmentation, the basic
problem may be viewed as a two-class classification. Where
the objective is to determine whether N consecutive audio
frames constitute a single homogeneous window W or two
different windows: W; and Ws. In order to detect if an

abrupt change occurred at the &1 frame within a window
of N frames, two models are built. One which represents
the entire window by a Gaussian characterized by u (mean),
¥ (variance); a second which represents the window up to

the ith frame, W1 with pi, 31 and the remaining part, W,
with a second Gaussian ps2, 32. This representation using a
gaussian process is not totally exact when the audio stream
contains overlapped speech and very short changes. To solve
this problem, our proposed technique uses 1-SVMs and expo-
nential family model to maximize the generalized likelihood
ratio with any probability distribution of windows.

The remainder of this paper is organized as follows. Sec-
tion 2 details audio segmentation techniques based on BIC.
The proposed speaker change detection method is presented
in section 3. Experimental results are provided in Section 4.
Section 5 concludes the paper with a summary and discus-
sion.

2. BIC BASED SEGMENTATION
TECHNIQUES

BIC [1] is a model selection criterion penalized by the model
complexity (amount of free parameters in the model). For
a given acoustic segment X;, the BIC value of a model M;
applied to it indicates how well the model fits the data, and
is determined by:

BIC(X, M) = log L(X;, M;) — %#(Mi) -log(Ni) (1)

log L(X;, M;) is the log-likelihood of the data given the con-
sidered model, \ is a free design parameter dependent on the
data being modeled; N; is the number of frames in the con-
sidered segment and #(M;) the number of free parameters
to estimate in model M;.

The BIC-based segmentation procedure is based on the
measure of the ABIC value between two consecutive au-
dio segments containing parameterized acoustic vectors Xi
and X of length N; and Nz respectively . ABIC repre-
sents the difference in BIC scores between two models: one
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suppose that the two segments are generated by the same
Gaussian distribution M (u,X) and the other suppose that
each segment is generated by a different Gaussian distribu-
tion (Mx(p1,51) # Ma(p2,32)).

L(X1 + X2, M)
(X1, M1) + L(X2, M2)

ABIC = log 7 —A#(M;) log(N1+N3)

where A#(i,j) is the difference between the number of free
parameters in the combined model versus the two individual
models. A positif ABIC value indicate the presence of a
speaker change between the two audio segments

BIC-based segmentation is more suitable to validate
speaker changes when we have enough data for a good esti-
mation. That is why we associate with BIC a metric-based
segmentation allowing obtaining a hybrid approach. In our
previous work [10], we developed a hybrid segmentation tech-
nique called DIS_T?_BIC that uses the Hotelling’s T2 sta-
tistic as a first step followed by the BIC as a second step.
Speaker change detection by Hotelling’s T2 distance is based
on the following concept: for the two audio segments X;
and Xo, if they can be modelled by multivariate Gaussian
distributions: M (p1,21) and M2 (p2,32), we assume their
covariances are equal but unknown, then the only difference
between them is the mean values reflected in the T2 distance

as:
Ny - N, B
2 Vi No . . 9
T = N, i — i) E (= o) (2)

Under the equal covariance assumption, we can use more
data to estimate the covariance and reduce the impact of
insufficient data in the estimation. Hence, The T2 distance
can detect more short speaker changes than BIC.

3. SVM BASED SPEAKER SEGMENTATION
3.1 1-class SVM

The One-class approach [11] has been successfully applied
to various problems such as outlier detection and novelty
detection [12, 13]. Its first application is outlier detection,
to detect uncharacteristic objects from a dataset, examples
which do not resemble the rest of the dataset in some way.
1-SVM [11] distinguishes one class of data from the rest of
the feature space given only a positive data set and never
sees the outlier data. Instead it must estimate the boundary
that separates those two classes based only on data which
lies on one side of it. The problem therefore is to define this
boundary in order to minimize misclassifications.

The aim of 1-SVMs is to use the training dataset X in
R? so as to learn a function fx R¢ — R such that most
of the data in X belong to the set Rx = {x € R? with
fa(z) > 0} while the volume of Rx is minimal. This problem
is termed minimum volume set (MVS) estimation and we see
that membership of z to Rx indicates whether this datum
is overall similar to X, or not. 1-SVMs solve MVS estima-
tion in the following way. First, a so-called kernel function
k(-,-) ; RTxR? — R is selected, here, we assume a Gaussian
RBF kernel such that k(z,z') = exp — ||z —z'||*/20% . This
kernel induces a so-called feature space denoted H and makes
the evaluation of k(z,z") a linear operation in H, whereas it
is nonlinear in R?. In practice, let the separating hyperplane
W = {h(-) € H with (h(:),w(-))» —p = 0} , then its para-
meters w(-) and p results from the optimization problem

min Llw()F+ g - ®3)
w,E,p 2 T um i1 =P
subject to (for i =1,...,m)

<U)('),l€($j7 )>H >p— §j7 and gj >0 (4)

where v tunes the fraction of data that are allowed to be on
the wrong side of W (these are the outliers and they do not
belong to Rx) and &;’s are so-called slack variables. It can
s shown [11] that a solution of (3)-(4) is such that w(-) =
i1 ajk(z;, ) where the a;’s verify the dual optimization

problem

1 X
min oo k(s j0) (5)
[e3
J.g'=1
subject to . >
OSOth%, a; =1 (6)

J
Finally, the decision function is fx(v) = = T, a;k(z;,2) —p
and p is computed by using that fx(z;) = 0 for those z;’s in
X that are located onto the boundary, i.e., those that verify
both a; # 0 and «; # 1/vm.

3.2 Exponential family

The exponential family covers a large number (and well-
known classes) of distributions such as Gaussian, Multino-
mial and poisson. A general representation of a exponential
family is given by the following probability density function:

p(zln) = h(z) exp{n’ T(z) — A(n)} (7)

where h(zx) is called the base density which is always > 0,

7n is the natural parameter,

T'(z) is the sufficient statistic vector

A(n) is the cumulant generating function or the log nor-
malizer.

The density function of a exponential family can be writ-
ten in the case of presence of an reproducing kernel Hilbert
space H with a reproducing kernel k as [14] :

p(z(n) = h(z) exp{(n(.), k(z,.))rn — A(n)} (8)
with 7

A(n) =log  exp{(n(.), k(z,.))rh(z)dz )

3.3 Speaker change detection using 1l-class SVM
and exponential family

Novetly change detection using SVM and exponential fam-
ily is proposed by Canu and Smola [15] [14]. Let X =
{z1,22,...,2n}and Y = {y1,y2,...,yn} two adjacent win-
dows of acoustic feature vectors extracted from the audio
signal ;where N is the number of data points in one window.
Let Z denote the union of the contents of the two windows
having 2N data points. The sequences of random variables
X and Y are distributed according respectively to P, and P,
distribution. We want to test if there exist a speaker turn
after the sample xn between the two windows. The problem
can be viewed as testing the hypothesis Hy : P, = P, against
the alternative H1 : P, # P,. Hy is the null hypothesis and
represents that the entire sequence is drawn from a single
distribution, thus there not exist a speaker turn. While H;
represents the hypothesis that there is a segment boundary
after sample X,,. The likelihood ratio test of this hypotheses
test is the following :

Q Q
L(Zl Z2N) = i]il ]P)ztﬁizl) ?iVN-H Py(zi) _ N Py(zi)
Sy = Q =
?51 Pq (i) i=N+1 Pz (21)

since both densities are unknown the generalized likelihood
ratio (GLR) has to be used :

L(Zl, ..
i=N+1 pZ(ZZ)

.,ZQN) =
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where P, and P, are the maximum likelihood estimates
of the densities. Assuming that both densities P, and P, are
included in the generalized exponential family, thus it exists
a reproducing kernel Hilbert space H embedded with the dot
product < -,+ >4 with a reproducing kernel k such that (see
eq 16):

Po(z) = h(2) exp{(n:(.), k(z, ))n — A(nz)} (1)

and
Py(2) = h(z) exp{(ny(.),k(z,.))n — A(ny)}  (12)
Using One class SVM and the exponential family, a robust

approximation of the maximum likelihood estimates of the
densities P, and P, can be written as:

X

P.(z) = h(z)exp(  a{k(z,2:) — Aln.)  (13)
P2 ¢

P, (2) = h(z) exp( ak(z, 1) — A(ny)  (14)

i=N+1

(@)

where o, i is determined by solving the one class SVM

problem on the first half of the data (21 to zx). while a<y>
given by solving the one class SVM problem on the second
half of the data (zi4n to zan). Using these three hypothe-
ses, the generalized likelihood ratio test is approximated as
follows:

F)
¥ exp ( ,i_NNHay)k(z],zl)fA(ny))
ioner exp (2N ak(z,2) — Alne))

L(Zh. . .,Zzt) =

A speaker change in the frame z, exist if :

L(zl,...,20t) > 82 <
XX ( ) @) ,
( Uk(zj,2) = o k(z,2) ) > 5. (15)
J=N+1 i=N+1 i=1
ere S, is a fixed threshold. Moreover,
fNNH a(y)k(Zj,Zi is very small and can be neglect

N

in comparison with a(z)k(zj, z;). Then a speaker turn

is detected when :

P2 ¢ X
(—  aPk(z,21)) > s, (16)

1
j=N41 =1

3.4 The proposed speaker segmentation technique

In subsection 3.3, we show that a speaker changes exist if
the condition defined by the equation (16) is verified. This
speaker change detection approach can be interpreted like
this: to decide if a speaker change exit between the two
windows X and Y, we built an SVM using the data X as
learning data, then Y data is used for testing if the two
windows are homogenous or not. On the other hand, since
Hy represent the hypothesis of P, = P, the likelihood ratio
test of the hypotheses test described in section A can be
written like this:

Qon
PAZI i=t+1

Py(z) Y p,(z)
TRy (=) -

i—1 Py(zi)

=

L(Zl7 .. ZQN
Using the same gait, a speaker change has occurred if :

(- alPk(z,2:)) > s, (17)

j=1 i=N+1

Experimental tests show that in some case is more appro-
priate when we use Y data for learning and X data for test-
ing. Figure 1 presents the segmentation of an audio stream
which presents four speaker changes. This audio stream is a
sample of broadcast news extracted from NIST RT-02 data.
Figures (b) and (c) represent the result of segmentation us-
ing respectively (16) and (17). Using the criteria (16), we
can detect only changes number 1 and 3 and using the cri-
teria (17), we can detect only changes number 2 and 4. For
these reason it is more appropriate to use the criterion de-
scribed as follow:

X X X X
(— o7kt (- ak(zm) > 8

J=N+1  i=1 j=1 i=N+1
(18)
In this case and as illustrated in Figure 1, we can detect easily
all speaker changes. Our technique detects speaker turns by
computing the distance detailed in equation (18) between a
pair of adjacent windows of the same size shifted by a fixed
step along the whole parameterized speech signal. In the
end of this procedure we obtain the curve of the variation of
the distance in time. The analysis of this curve shows that
a speaker change point is characterized by the presence of a
"significant” peak. A peak is regarded as ”significant” when
it presents a high value. So, break points can be detected
easily by searching the local maxima of the distance curve

that presents a value higher than a fixed threshold.

4. EXPERIMENTAL RESULTS AND
DISCUSSION

4.1 Data set

In order to evaluate 1-SVM-based segmentation method,
experiments are based essentially on the segmentation of
IDIAP meetings Corpus. This database contains two sep-
arate test sets sampled at 16 kHz. The first test set contains
only single speaker segments without overlapping. However
the second one contains a short overlap segment included
at each speaker change. Further, to generalize our experi-
ments, we used also other types of audio streams like broad-
cast news and telephone conversations. These audio streams
are extracted from the Rich Transcription-04 MDE Training
Data Speech corpus created by Linguistic Data Consortium
(LDC). Description of the used datasets is presented below:
1. IDIAP meetings [16]:

e Test set 1: contains only single speaker segments
without overlap segments. This test set groups nine
files, each of them contains 10 speaker turns con-
structed in a random manner with segments duration
varying from 5 to 20 seconds. The total test set du-
ration was 20 minutes.

e Test set 2: contains a short overlap segment included
at each speaker change. The test set is formed by
six files, each containing 10 single speaker segments
(of between 5-17 seconds duration), interleaved with
9 segments of dual-speaker overlap (of between 1.5-5
seconds duration).

2. Broadcast news data: is composed of three approxi-
mately 10-minute excerpts from three different broad-
casts. The broadcasts were selected from programs from
NBC, CNN and ABC, all collected in 1998.

3. Telephone conversation: is composed of a 10-minute ex-
cerpt from a conversation between two switchboard op-
erators.

4.2 Evaluation criteria

For evaluating the performance of the segmentation task, we
use Type-I errors: precision (PRC) and Type-II errors: re-
call (RCL) was widely used in previous research [17]. Type-I
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Figure 1: Segmentation of an audio segment containing four speaker changes. (a):
1-SVM based distance measures using criteria defined respectively by (16), (17) and (18).

34

S
2
g (a)
40
Time (s)
12 34
° T
‘a_ 260}
o=
B
88 a0 1@
ag
S5 o
=
@

40
Time (s)

The audio segment. (b), (c) and (d):
Distance (16) detects speaker
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errors occur if a true change is not spotted (missed alarm)
within a certain window. Type-II errors occur when a de-
tected change does not correspond to a true change in the
reference (false alarm). Precision (PRC) and recall (RCL)
are defined as below:

number of correctly found changes

PRC = 19
Total number of changes found (19)
number of correctly found changes
L = 2
RC Total number of correct changes (20)
(21)

In order to compare the performance of different systems,
the F-measure is often used and is defined as

2.0 x PRC x RCL
~ PRC+RCL

The F-measure varies from 0 to 1, with a higher F-
measure indicating better performance.

(22)

4.3 Evaluation
4.8.1 Audio parametrization

In the experiments, two kinds of feature vectors are pro-
posed: MFCCs and DWCs. Mel frequency cepstral coef-
ficients (MFCCs) are a short-time spectral decomposition
of audio that convey the general frequency characteristics
important to human hearing. We calculate MFCCs by us-
ing overlapping frames of 30 ms. The Discrete Wavelet Co-
efficients (DWCs) are computed by applying the Discrete
Wavelet Transform (DWT) which provides a time-frequency
representation of the signal. It was developed to over-
come the short coming of the Short Time Fourier Transform
(STFT), which can also be used to analyze non-stationary
signals. While STFT gives a constant resolution at all fre-
quencies, the Wavelet Transform uses multi-resolution tech-
nique by which different frequencies are analyzed with dif-
ferent resolutions. The DWT is computed by successive
lowpass and highpass filtering of the discrete time-domain
signal. This is called the Mallat algorithm or Mallat-tree
decomposition [18].

4.8.2 Segmentation results

Table 1 illustrates speaker segmentation experiments con-
ducted on the various audio documents previously de-
scribed and their corresponding results using 1-SVMs and

DIS_T?_BIC approaches. Segmentation using 1-SVMs out-
performs DIS_T?_BIC based segmentation technique for all
the tested audio documents. The segmentation of the IDIAP
meetings(1) using the two methods presents the highest value
of precision and recall. In fact, opposite to other types of
audio streams, this corpus contains long speech segments al-
lowing good estimation of data. As presented in the table 1,
the PRC and RCL values obtained with IDIAP meetings(1)
increases respectively from 0.69 to 0.8 and from 0.68 to 0.79.

The proposed method based on 1-SVMs allows the im-
provement of speaker change detection in audio streams
which contain overlapping speeches. The improvement in
the PRC and RCL values using IDIAP meetings(2) is more
than 10% with respect to DIS_T?_BIC method. Generally,
BIC based segmentation techniques detect a speaker change
between two adjacent analysis windows. Each window is
modelized by a gaussian distribution. This supposition is
not true when the window contains overlapped speeches. In
this case, it is more suitable to suppose that each window
can be modelized by an exponential family.

Broadcast news segmentation results are enhanced by
adding discrete wavelet coefficients to cepstral coefficients.
The use of this kind of parametrization makes speaker
changes detection possible in the presence of background
noise. Further, deploying 1-SVMs permits to better put
in evidence this characteristic since it is insensitive to the
dimension of acoustic features. Also, the proposed method
presents it’s more appropriate to detect speaker changes close
each others. The F value obtained with the segmentation re-
sults of the telephone conversation is raised from 0.56 with
DIS_T?_BIC method to 0.71 with 1-SVMS method.

5. CONCLUSION

In this paper, we have proposed a new unsupervised detec-
tion algorithm based on 1-SVMs. This algorithm outper-
forms model-selection based detection methods. Using the
exponential family model, we obtain a good estimation of
the generalized Likelihood ratio applied on the known hy-
pothesis test generally used in change detection tasks.
Adding to cepstral coefficients the discrete wavelet co-
efficients permitted to detect speaker changes even in real-
world conditions in which the environment and context are
so complex that the segmentation results are often affected.
The use of support vector machines allow to deal practically
with this high dimensional acoustic features vector. Experi-
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Table 1: Segmentation results using the proposed 1-SVM and DIS_T?_BIC methods.

1-SVM method DIS_T?_BIC method

Features RCL

PRC F Features RCL  PRC F

IDIAP meetings (1) 39 MFCC+DWCs 0.8
IDIAP meetings (2) 39 MFCC+DWCs  0.68
Broadcast news 39 MFCC+DWCs  0.75
Telephone conversation || 39 MFCC+DWCs  0.72

079 0.79 || 13 MFCC 0.69 0.68 0.68
0.67 0.67 || 13 MFCC 0.58 0.56 0.57
0.75 0.75 || 39 MFCC 0.63 0.66 0.64
0.71 0.71 || 13 MFCC 0.56 0.58 0.57

mental results present higher precision and recall values than
those obtained with DIS_T?_BIC technique, the increase of
PRC and RCL values obtained with various kinds of audio
streams is roughly over 10%.
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