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ABSTRACT

The concept of syndrome plays undoubtedly a central role
in distributed source coding. With known source-side corre-
lation, systems based on continuous-valued syndromes have
indeed been shown to perform close to the Wyner-Ziv bound,
both in theory and in practice. This paper investigates the ap-
plication of the continuous-valued syndrome-based approach
to the real case, where little or no knowledge regarding the
source-side correlation is available at the encoder. Since in
this case the encoder cannot operate at his best, traditional
maximum likelihood decoding do not perform well. Itera-
tive, factor graph based, statistical model-aided decoding is
instead able to provide more accurate results. The exper-
iments show in particular that model-aided decoding leads
to about one order of magnitude less reconstruction errors
within a few decoder iterations, which amounts to an increase
of the signal-to-noise ratio of up to 3 dB.

1. INTRODUCTION

In the problem of coding with side information at the de-
coder, a source must be encoded and decoded within a given
distortion under the condition that another source, correlated
with the former, is only available at the decoder. Despite the
theoretical performance bounds of this scenario were found
in the seventies [1], practical applications have appeared only
recently. Most of them rely on the syndrome concept bor-
rowed from channel coding [2] or on some similar concepts,
like the one proposed in [3] to embody quality scalability
features as well.

To maximize the coding performance, the correlation be-
tween the two sources must be known during encoding. But,
in real scenarios, the correlation is neither known nor time-
invariant and must be estimated. In distributed video coding
applications [4] where a frame and a motion-compensated
estimate are considered as the two correlated sources, for ex-
ample, such correlation is either coarsely approximated at the
encoder [5] or learned using feedback from the decoder [4].

While feedback messages permit to obtain reasonable
correlation estimates, coarse estimates at the encoder may
be wrong and lead to decoding errors. However, without any
feedback, the decoder can still try to minimize the errors by
assuming a statistical model ([6, 7]) for the source [8].

This work proposes an iterative, factor graph based [9]
solution to the problem of optimal syndrome decoding for
the scenarios where the correlation structure can be modeled
by a hidden Markov model [6] and the encoder relies only
on coarse correlation estimates. Section 2 reviews the dis-
tributed source coding algorithm based on continuous-valued
syndromes [3]. Section 3 illustrates the proposed decoding
algorithm. The results of the simulations are presented in

Section 4. Section 5 outlines the main results and discusses
some future lines of research.

2. CONTINUOUS-VALUED SYNDROME-BASED
DISTRIBUTED SOURCE CODING

2.1 Definition and Properties

Consider a real m-dimensional lattice Λ ⊂ R
m. Since Λ is a

subgroup of the additive group R
m, it induces the partition of

R
m into the cosets that belong to the quotient group R

m/Λ.
Choose a labeling function l : R

m/Λ→ R
m such that l(A) ∈

A, ∀A ∈ R
m/Λ, and call fundamental region induced by l the

image of l, i.e. Rl(Λ) , l(Rm/Λ)⊂ R
m. Note that the set of

translates {Rl(Λ)+b : b ∈ Λ} forms a regular tessellation of
R
m, and hence the volume of Rl(Λ) equalsV (Λ), the volume

of n-space per point of Λ.
If the sum operation induced by l on Rl(Λ) is considered,

l is an isomorphism. Denote with ν the natural homomor-

phism ν : R
m → R

m/Λ, and define the function sl , l ◦ ν :
R
m → Rl(Λ). Since sl identifies indeed the coset to which

any element of R
m belongs, sl(a) represents the continuous-

valued syndrome of a ∈ R
m, by analogy with the role of the

traditional syndrome in linear codes.
It can be easily shown that the continuous-valued syn-

drome satisfies the following properties [10]:

sl(a+λ ) = sl(a), ∀a ∈ R
m,λ ∈ Λ ; (1)

sl(a) = a, ∀a ∈ Rl(Λ) ; (2)

sl(a+b) = sl(a)+ sl(b), ∀a,b ∈ R
m , (3)

with the sum on the right-hand side of (3) being the sum op-
eration induced by l. As a remark, s̃l : R

m→ (Rm,+) is not

a homomorphism1 since Rl(Λ) is not a subgroup of (Rm,+).
However, it is straightforward to show that

s̃l(a+b) = s̃l (s̃l(a)+ s̃l(b)) , ∀a,b ∈ R
m . (4)

Since R
m is a normed space under the Lp-norm (p ≥ 1),

it is common to take elements with minimum norm as coset
representatives. A labeling function Vp such that

‖Vp(A)‖p ≤ ‖a‖p, ∀A ∈ R
m/Λ,a ∈ A

defines then a convex fundamental region RVp(Λ) known as
fundamental Voronoi region. As a remark, note that when
p = 2 the corresponding tessellation of R

m consists of deci-
sion regions for a minimum-distance quantizer (or decoder)

1In this section, for the sake of clarity, the continuous-valued syndrome
sl(·) is denoted as s̃l(·) when intended as belonging to (Rm,+) rather than
(Rl(Λ),+).
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Figure 1: Coding with side information at the decoder, with a back-
ward additive correlation channel (N is independent of Y ).

that uses Λ as codebook. In order to evaluate the continuous-
valued syndrome sVp(a) ∈ RVp(Λ), it is immediate to verify
that it can be obtained as quantization error of a minimum-
norm quantizer that uses Λ as codebook. In particular, defin-
ing

Q
(p)
Λ (a) , λ ∈ Λ : ‖λ −a‖p ≤ ‖γ−a‖p, ∀γ ∈ Λ

as the closest lattice point to a (with the further condition
(a−λ ) ∈ RVp(Λ) in case of ambiguity), we have

s̃Vp(a) = a−Q(p)
Λ (a) . (5)

As the traditional syndrome, this particular continuous-
valued syndrome of a identifies hence the minimum-norm
element that, subtracted to a, leads to an element (the clos-
est) of Λ.

2.2 Coding with Side Information (CSI) at the Decoder

Consider now two continuous random sources X and Y
whose correlation is described by means of a backward ad-
ditive channel, i.e. such that X = Y +N, where N is a con-
tinuous random source independent of Y , memoryless, and
stationary. Assume that we want to efficiently encode any
m-dimensional realization x of X allowing only the decoder
to access the corresponding realization y of Y , as in Fig. 1.

If each m-dimensional realization n of N belongs to
RVp(Λ), then the continuous-valued syndrome sVp(x) is suf-
ficient for perfect reconstruction at the decoder. In fact,

x = y+n= y+ s̃Vp(n) (6)

= y+ s̃Vp(x− y) = y+ s̃Vp
(

s̃Vp(x)+ s̃Vp(−y)
)

, (7)

where (6) follows from (2), and (7) follows from the property
of the sum (4). From an operative point of view it is useful
to note that

x = y+ s̃Vp

(

s̃Vp(x)− y−Q
(p)
Λ (−y)

)

(8)

= y+ s̃Vp
(

s̃Vp(x)− y
)

(9)

= s̃Vp(x)−Q
(p)
Λ

(

s̃Vp(x)− y
)

, (10)

where (8) follows from the operative definition of the
continuous-valued syndrome (5), (9) follows from the peri-
odicity (1) of sVp(·), and (10), again, from the definition (5).
Then, a single quantization operation is sufficient at the de-
coder for perfect reconstruction.

Since sVp(X) is a continuous random variable, a real
channel can actually convey only a quantized (noisy) version
of the continuous-valued syndrome to the decoder. Then the
reconstruction satisfies

x̂ = y+ s̃Vp
(

s̃Vp(x)+q+ s̃Vp(−y)
)

(11)

= y+ s̃Vp
(

s̃Vp(x)+ s̃Vp(q)+ s̃Vp(−y)
)

(12)

= y+ s̃Vp(x+q− y) = y+ s̃Vp(n+q) (13)

= x+
(

q−Q(p)
Λ (n+q)

)

= x+(q+qol) , (14)

where: (11) is obtained from (7) by substitution of s̃Vp(x)
with s̃Vp(x)+ q (q is an m-dimensional realization of a ran-
dom variable Q), (12) and (13) follow from (4), and (14)
follows, again, from the definition (5).

The total reconstruction error qt , q+ qol is hence the

sum of the granular error q, and of the overload error qol ,

−Q(p)
Λ (n+ q). If q is negligible w.r.t. n, and it is reasonable

that this happens at high transmission rates, then the proba-

bility of qol being not zero (that is called error probability2

Pe) is negligible and qt ≃ q. Hence, the same additive er-
ror Q would impair both the syndrome and the source at the
decoder (as shown in a slightly different way in [3]).

3. STATISTICAL MODEL-AIDED DECODING

The traditional decoding algorithm (10), that simply amounts
to maximum-likelihood (ML) decoding, gives perfect recon-
struction if Λ is such that n ∈ RVp(Λ), and is asymptotically

optimal in the rate-distortion sense if V (Λ) ≃ V (A
(m)
ε ) [10],

where V (A
(m)
ε ) is the volume of the typical set [11] of N.

Hence, for optimal performance, the encoder (and the de-
coder) must know the statistics of N and choose accordingly
a good lattice Λ.

In the case where N is stationary except for the mean and
the variance, but they are known at both the encoder and the
decoder, it is still possible to achieve optimality by coding
an opportune affine-transformed version of X . While such a
model may be a good interpretative model for real correlation
channels, only partial knowledge about the source-side cor-
relation is usually available at the encoder. If the syndrome
formation algorithm (5) is tailored to this wrong correlation
information, then ML decoding is suboptimal.

In order to ease the investigation for an optimal decoding
algorithm, the actual encoding procedure shown in Fig. 2(a)
is approximated as in Fig. 2(b) (which in fact describes the
same operation if s+ q ∈ RVp(Λ)) and Fig. 2(c) (where ñ =

n+q). Considering that Y → X̃ → S̃ is a Markov chain [11],
optimal maximum a posteriori probability (MAP) decoding
amounts to maximizing

f (x̃|y, s̃) ∝ f (x̃|y) f (s̃|x̃) , (15)

where the terms f (x̃|y) and f (s̃|x̃) take account of the corre-
lation channel structure and of the syndrome formation algo-
rithm respectively.

3.1 Statistical Modeling of the Correlation Channel

Due to the independence between Y and Ñ, f (x̃|y) = fÑ(x̃−
y|y) = fÑ(x̃− y), where fÑ(·) is the probability distribution

function (pdf ) of Ñ. In order to model a possibly time-
varying correlation channel whose actual statistics is not ex-
actly known at any time instant, a doubly stochastic Hidden
Markov Model (HMM) [6] is employed. In particular, it is
assumed that the model has L states and that the distribution

2An error occurs each time some coordinate of the m-dimensional vector

Q
(p)
Λ (n+q) is not 0.
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Figure 2: Syndrome formation and transmission.

corresponding to the j-th state is the generalized Gaussian
distribution (GGD) Gα(µ j,σ

2
j ), j = 0,1, . . . ,L−1.

The reasons for these choices are essentially two. Firstly,
HMMs are very powerful tools for real signal modeling and
lead to efficient signal processing algorithms (e.g. denoising
[7]); hence, their utilization appears very suitable in the con-
text of CSI as well. Secondly, GGDs with α < 2 (e.g. Lapla-
cian distributions) are more adequate for modeling the statis-
tics of the difference between highly correlated data.

Once the hidden state variables σ Ñi , i= 0,1, . . . ,m−1 are
introduced, fÑ is found by marginalizing

fÑ

(

n,σ Ñ
)

= p
(

σ Ñ0

)

fÑ

(

n0

∣

∣

∣
σ Ñ0

)

·

·
m−1

∏
i=1

p
(

σ Ñi

∣

∣

∣
σ Ñi−1

)

fÑ

(

ni

∣

∣

∣
σ Ñi

)

,

where, with β 2
j = σ2

j Γ(1/α)/2Γ(3/α),

fÑ (a | j ) =
α/2

√

2Γ(1/α)2 β 2
j

e
−
(

|a−µ j |
√

2β2
j

)α

.

3.2 Modeling of Trellis-Based Syndrome Formation

Since the syndrome formation is a deterministic transforma-
tion, f (s̃|x̃) is a Dirac’s delta function that, given x̃, reveals its
syndrome. Under the condition s̃ ∈ RVp(Λ), f (s̃|x̃) is equiv-

alently a delta function that reveals the event {x̃− s̃ ∈ Λ}. If
the quantizer used in (5) is anM-state trellis-coded quantizer
[12] and the trellis state variables σCk , k = −1,0, . . . ,m− 1
are introduced, f (s̃|x̃) is found marginalizing

f
(

s̃,σC|x̃
)

=
m−1

∏
k=0

χ
σC
k

σC
k−1

∑
b∈B

σC
k

σC
k−1

δ (x̃k− s̃k−b)

where χ lj and Blj are the indicator function (unitary if j is

connected to l, zero otherwise) and the set of reconstruction
values relative to the transition from state j to l respectively.

3.3 The Factor Graph Approach to Decoding

Despite these factorizations, it seems still difficult to max-
imize (15). But once a factor graph [9] is available, it is

σÑ
i

σC

k−1

x̃i

f
σ

C

k

σC

k−1

(x̃k − s̃k)

f
Ñ

“

x̃i − yi

˛

˛

˛
σÑ

i

”p
“

σÑ
0

”

p
“

σÑ
i

˛

˛

˛σÑ
i−1

”

f(s̃|x̃)
f(x̃|y) µ

Ñ
(x̃i)µC (x̃k)

Figure 3: Example factor graph representing the right hand side of

(15) with m= 4, and f
σCk
σCk−1

(x) , χ
σCk
σCk−1

∑
b∈B

σC
k

σC
k−1

δ (x−b).

straightforward to find the best MAP estimate (at each in-
stant i) through standard message passing algorithms, i.e. to
evaluate

x̂i = argmax
x̃i
f (x̃i|y) f (s̃|x̃i) .

In particular, to increase the independence between the
information about x̃ brought by y and s̃, the syndrome forma-
tion algorithm is operated on a randomly scrambled version
of x, such that the actual factor graph is similar to the one
sketched in Fig. 3. Since the factor graph is not cycle-free,
decoding is done according to the following iterative process.

1. Initialize themodelmessages µ
(0)

Ñ
(x̃i), i= 0,1, . . . ,m−1,

with the pdf s of ñi assumed during encoding, centered
around yi (i.e. take account of the partial knowledge on
the source-side correlation); using these messages, run
the standard forward/backward algorithm (FBA) on the
factor graph representing f (s̃|x̃) to obtain the code mes-

sages µ
(0)
C (x̃k), k = 0,1, . . . ,m−1; set j = 1.

2. (Model-based processing) Using the messages

µ
( j−1)
C (x̃k), run the FBA on the factor graph repre-

senting f (x̃|y) and obtain the messages µ
( j)

Ñ
(x̃i).

3. (Code-based processing) Using the messages µ
( j)

Ñ
(x̃i),

run the FBA on the factor graph representing f (s̃|x̃) and

obtain the messages µ
( j)
C (x̃k).

4. Check if the required number of iterations has been done;
if not, set j← j+1 and go back to step 2.

5. Compute the marginals f (x̃i|y) f (s̃|x̃i) as µ
( j)

Ñ
(x̃i)µ

( j)
C (x̃k)

and maximize them to obtain the MAP estimates.

Note that all codemessages µ
( j)
C (x̃k), j= 0,1, . . . , consist

of a sum of delta functions centered on the elements of the
set Ak , s̃k +

⋃M−1
j,l=0 Blj, that is the s̃k-translated extended

reconstruction set [12] of the k-th trellis section. Similarly,

in step 3, only the values of the model messages µ
( j)

Ñ
(x̃i),

j = 0,1, . . . , taken on Ai contribute to the code messages.
Hence, all messages need to be computed only on the discrete
alphabets Ai, i= 0,1, . . . ,m−1.

4. SIMULATIONS AND EXPERIMENTAL RESULTS

To validate the proposed iterative decoding algorithm, the
system shown in Fig. 4 has been simulated. In this system,

• y is a realization of a zero-mean, unitary variance,
i.i.d. Gaussian process; n is a realization of an L-state
HMM (L = 3 or 6) with distribution in the j-th state
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Figure 4: Block diagram of the simulated system for coding with
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Gα(0,σ2
j ) (α = 2 or 1), j = 0,1, . . . ,L−1, and variances

chosen in order to model a time-varying backward cor-
relation signal-to-noise ratio [10] (i.e. side-to-noise vari-
ance ratio) in the range from 5 to 20 dB (see Table 1);

• in order to generate a partial knowledge about the ac-
tual noise variances σ2

i , i = 0,1, . . . ,m− 1, n is identi-
fied within another HMM with possibly different number
of states and state variances; this information is used by
the encoder and transmitted to the decoder (the required
bit-rate is taken into account);

• s is formed using an 8-state Z/4Z-based trellis-coded
quantizer (with p = 2) that uses the [13 4] binary code
[12]. Since the (two-dimension) normalized volume of
the equivalent lattice would be 4, each side is multiplied

by
√

22(hi−1)kv, where hi is the differential entropy of
ni (according to the partial knowledge); then, the nor-
malized volume of the equivalent lattice is kv times the
assumed normalized typical set [11] volume (this exper-
imentally optimized factor takes account of both the im-
perfect typical set-Voronoi region matching and the syn-
drome corruption due to quantization [10]);

• s is quantized using a uniform, embedded scalar quan-
tizer whose smallest step δ is such that the average bit-

rate equals R= 4 bit/sample, i.e. δ =
√
kv2
h̄−R with h̄=

∑L−1
j=0 p( j)h j the average differential entropy of n accord-

ing to the model used for the identification of the noise;
inverse quantization uses the middle point of each quanti-
zation interval, and considering only most significant bit-
planes permits to address the target bit-rates R = 1,2,3
bit/sample as well;

• assuming that the HMM according to which the noise
was generated is known, the decoder performs the algo-
rithm described in Section 3. The information regarding
the partial knowledge is used to determine the reconstruc-
tion alphabets Ai; since they are not finite, only the 21
closest points to yi are actually considered (decoding is
impaired very slightly by this choice due to the fast de-
cay of the state functions fÑ(·|·)).
The results in the following are relative to the traditional

ML decoding, the MAP decoding with j = 0 iterations, or
the so called TURBO decoding (i.e. the MAP decoding with
j = 4 iterations, that in all examined cases were proven to
be sufficient for convergence). They are reported in terms
of the error probability Pe and the mean variance of the total
reconstruction error, averaged over 1000 sequences of m =
1000 samples each. The lower bound

DL(R) =
22h̄

2πe
2−2R

name L p( j) p(l| j) ·103 σ2
j (dB)

HMM(6) 6 0.372 982, 6, 5, 4, 2, 1 −20.0
0.235 9, 974, 7, 5, 3, 2 −17.0
0.175 10, 8, 970, 6, 4, 2 −14.0
0.119 12, 10, 7, 964, 5, 2 −11.0
0.070 15, 12, 9, 6, 955, 3 −8.0
0.029 20, 16, 12, 8, 4, 941 −5.0

HMM(3) 3 0.607 986, 10, 4 −18.6
0.294 20, 974, 7 −12.5
0.099 29, 16, 954 −6.9

HMM(2) 2 0.782 991, 9 −17.1
0.218 34, 966 −8.7

HMM(1) 1 1.000 1000 −13.5

Table 1: The considered stationary HMMs. p( j) is the stationary
distribution (that is used as initial probability), and p(l| j) are the
transition probabilities from state j to state l. The HMM(6) model
was chosen in order to represent the frequent case where the source-
side correlation is normally high (small noise) except for some oc-
casional interval of time (high noise). The HMM(3), HMM(2), and
HMM(1) models are obtained from HMM(6) by grouping (in order)
the 6 states into 3, 2, and 1 macro-states respectively.

to the reconstruction error variance, with h̄ the average differ-
ential entropy of n according to the model used for its gener-
ation, is reported as well. This bound represents the Shannon
lower bound [11] for the problem of coding n (i.e. of coding
x with y known at the encoder as well), that in the i.i.d. Gaus-
sian case (L = 1, α = 2) equals the theoretical performance
limit of the simulated system, independently from the pdf of
Y .

Figures 5(a) and 5(b) refer to the case of a Gaussian noise
(α = 2), generated according to HMM(3) (see Table 1). If
the encoder has knowledge about this model (i.e. the same

model is artificially used for hidden state identification3),
the TURBO decoding algorithm does not perform any bet-
ter than the MAP decoding algorithm, that was shown to
perform like the ML decoding. If the encoder only knows
the average variance of n (i.e. the HMM(1) model is used
for hidden state identification) the MAP decoding performs
again like the ML decoding, but TURBO decoding leads to
about one order of magnitude less reconstruction errors (see
Fig. 5(a)), in particular at bit-rates R= 3÷4 bit/sample. This
translates into an up to 3 dB decrease of the mean error vari-
ance (see Fig. 5(b)). Clearly, the performance is still inferior
w.r.t. the former case, except for low bit-rates, were a lower
Pe is obtained.

Figures 6(a) and 6(b) refer to the case of a Gaussian noise
generated according to HMM(6). In all experiments it turned
out that ML and MAP decoding lead to the same perfor-
mances. Again, if the encoder knows (exactly or partially)
the generating model, TURBO decoding performs like MAP
decoding, but if the encoder only knows the average variance
of n, TURBO decoding permits to improve both the error
probability and the mean error variance. At high bit-rates,
the more the encoder knows about the model the better is the
performance; at low bit-rates, however, the performances are
about the same independently from the partial knowledge.

The results summarized in Table 2, that refer to the target
bit-rate of 4 bit/sample, encompass the Laplacian case (α =
1) as well. Differently from the Gaussian case, and w.r.t. ML
decoding, MAP decoding is more performing, and TURBO

3Note that there may be still uncertainties about the actual hidden states.
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Figure 5: Results using the HMM(3) as generating model.

α L ∆ML (dB) ∆MAP (dB) ∆TURBO (dB)

2 3 14.94(−2.9) +0.01(+0.0) −3.25(−1.0)
6 16.60(−2.7) −0.01(−0.0) −2.56(−0.9)

1 3 18.67(−2.9) −0.81(−0.4) −0.23(−0.2)
6 19.57(−2.9) −0.58(−0.3) −0.23(−0.2)

Table 2: ∆ML: performance loss (w.r.t. DL(R)) of ML decod-
ing, with HMM(L) and HMM(1) as the generating model and
the identification model respectively (in parentheses, magnitude
of Pe); ∆MAP(∆TURBO): difference of the performance loss of
MAP(TURBO) decoding (in parentheses, relative magnitude of Pe)
w.r.t. ML(MAP) decoding.

decoding offers a smaller but sensible decrease of the error
probability and variance, that amounts up to 0.6 orders of
magnitude and 1 dB respectively.

5. CONCLUSION

An iterative syndrome decoding algorithm for coding with
side information over time-varying correlation channels has
been proposed that takes advantage of the HMM that models
the channel statistics. If the encoder has no knowledge about
the channel and cannot rely on feedback from the decoder,
this algorithm performs noticeably better than traditional ML
decoding. In order to extend its application to real scenarios,
future research directions include investigating more specific
correlation models and devising procedures for estimation of
the actual model parameters at the decoder.

REFERENCES

[1] A. D. Wyner and J. Ziv, “The rate-distortion function for
source coding with side information at the decoder,” IEEE
Trans. Inf. Theory, vol. 22, no. 1, pp. 1–10, Jan. 1976.

[2] S. S. Pradhan and K. Ramchandran, “Distributed source cod-
ing using syndromes (DISCUS): design and construction,”

(a)

1 1.5 2 2.5 3 3.5 4 4.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

mean rate (bit/sample)

P
e

 

 

6 id. states, ML/MAP/TURBO

3 id. states, ML/MAP/TURBO

2 id. states, ML/MAP/TURBO

1 id. state, ML/MAP

1 id. state, TURBO

(b)

1 1.5 2 2.5 3 3.5 4 4.5
−45

−40

−35

−30

−25

−20

−15

−10

mean rate (bit/sample)

e
rr

o
r 

v
a

ri
a

n
c
e

 (
d

B
)

 

 

6 id. states, ML/MAP/TURBO

3 id. states, ML/MAP/TURBO

2 id. states, ML/MAP/TURBO

1 id. state, ML/MAP

1 id. state, TURBO
D

L
(R)

Figure 6: Results using the HMM(6) as generating model.

IEEE Trans. Inf. Theory, vol. 49, no. 3, pp. 626–643, Mar.
2003.

[3] L. Cappellari and G. A. Mian, “A practical algorithm for
distributed source coding based on continuous-valued syn-
dromes,” in Proc. of European Signal Process. Conf. (EU-
SIPCO), Florence, Italy, 4-8 Sep. 2006.

[4] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero,
“Distributed video coding,” Proc. IEEE, vol. 93, no. 1, pp.
71–83, Jan. 2005.

[5] L. Cappellari, “Wavelet-domain distributed video coding
based on continuous-valued syndromes,” in Proc. of European
Signal Process. Conf. (EUSIPCO), Poznań, Poland, 3-7 Sep.
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