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ABSTRACT

This paper presents a new technique for the estimation of the
PR intervals from the electrocardiograms (ECG) taking into
account the influence of the T wave overlapping the P wave
during high heart rate. The decreasing part of the T wave
is modelled by a piecewise linear function, in a maximum
likelihood approach. This leads to improve the estimation
of the PR intervals in exercise and recovery. Experimental
results show that this new method gives more accurate
estimation of the PR intervals both in synthetic data and in
real data. Also, we show that measurements of PR and RR
intervals permit us to classify athletes in function of their
training degree.

1. INTRODUCTION

Estimating the heart periods variability during exercice and
recovery is a real challenge in biomedical engineering. One
reason is that the global understanding of the interaction be-
tween the neural activity and the cardiac outputs would be
relevant to improve the performances of the future pace-
makers. For instance, the analysis of the PR interval trend
could be performed in order to evaluate the sympathetic-
parasympathetic balance but also to reveal the atrioventric-
ular conduction properties [1].

However, the analysis of PR intervals during exercice and
recovery has been rarely addressed to date [2]. The main
reason is that the estimation of these intervals is particularly
biased at high heart rates, since the T wave overlaps the P
one (see figure 1). Consequently, new ad-hoc time delay
estimators have to be designed.

Among the well-known time delay estimators, the
techniques based on the detection of the maximum of the
cross correlation is not relevant to estimate the PR intervals
at high heart rates [3, 4]. Indeed, since the overlapping of the
P and T waves is not considered, the latter introduces a bias
when estimating the PR intervals. Finally, one solution to
efficiently estimate the PR intervals should be to model this
overlapping in order to reduce the influence of the T wave
presence. In parallel, when the signal under consideration
is unknown, the Woody technique [5], is a candidate that
belongs to the cross correlation family. This method, that
has been recently put in light [6], has to be extended to
account for the mentioned overlapping. In addition, it has
been shown that the Woody technique is suboptimal [7, 8].
Moreover, for time delay estimation problems, several other
techniques have been used mainly working in the frequency
domain [6, 9, 10]. Unfortunately, the introduction of a priori
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Figure 1: Example of a real ECG where the T and P waves
are disjointed at rest (a), and overlapped during exercise (b).

concerning the T wave is not an easy task in the frequency
domain. Conversely, it is well described in the time domain,
i.e. the monophasic behaviour. Also, the wavelet transform
is a good candidate for bioelectrical signals analysis [11].
Although it has been shown to be a promising tool, these
typical methods do not overcome our problem because of
the high level of overlapping between the T and the P waves
in exercise (see section 2).

We therefore propose in this paper the development
of an original approach which improves significantly the
estimation of the PR intervals, during exercice or at rest. Our
method combines: i) an efficient modelling of the T wave
which allows the cancellation of an expected overlapping
with the P wave; ii) an improved version of the Woody
technique using an iterative Maximum-Likelihood Estimator
(MLE) [7, 8]. As it will be presented in the sequel, the global
modelling of the observations will involve the unknowns in a
non-linear manner. Unlike the similar models introduced by
[9, 10], we will assume that a ML estimator exists. In [6, 12],
it has been shown that, when this model identification is
addressed with a ML approach, saddle point singularities
appear. Thus, this theoretical assessment will not be in the
scope of this paper.

The rest of the paper is organized as follows. Section 2
introduces the problem statement and the proposed approach.
Section 3 deals with the complete description of the proposed
T wave modelling. Section 4 gives the validation of the pro-
posed T wave modelling on synthetic data of ECG, and one
application on real data: the PR intervals estimation on ECG
recorded in exercise test. Finally, we conclude and present
some future works in section 5.
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2. PROBLEM STATEMENT AND CONTRIBUTION

The goal of our current work is to estimate the PR intervals
on ECG recorded in exercise test. Since the T and P waves
are overlapping at high heart rates, it introduces a bias in the
estimation of the PR intervals.

We emphasize that the proposed method of time delay
estimation is processed in the time domain [5, 7, 8]. How-
ever among the reference methods, the most recent exploit
the frequency domain because the observation noise covari-
ance is unknown, and the real delays are not integer [9, 10].
Note that this technique assumes that a set of observations
is available, where the unknowns are the amplitude jitter, the
time delay and, the reference signal itself [10]. A more gen-
eral model is provided by [6], where the reference signal is
in fact a mixture of several unknown signals.

When a priori of the signal shape is available, the wavelet
transform (WT) provides a good estimation of intervals
based on the detection of singularity in the time scale domain
[11]. Unfortunately, it does not overcome the problem of T-P
waves fusion in exercise. This statement is supported by the
observation that the two waves share a common frequency
range. Then, the zero-crossings of the WT, indicating the lo-
cation of the signal shape variation points, fails. Similarly
to the WT assumption, our a priori information will be ex-
pressed in the time domain; we will assume a white gaussian
noise for the error measurement and a positive monophasic
shape for the T wave.

The T-P waves fusion analysis could be simplified by using a
known constant T wave, chosen as a template. This template
could be optimally segmented from a real T wave in the rest-
ing period. Unfortunately, the shape of the T wave varies as
long as the effort increases, discarding this simple approach.
Moreover, methods based on spline interpolation can not be
applied because the anchor points of the T wave are hidden
when the fusion occurs.

These previous comparisons justify the extension of
the T wave modelling techniques using a straight line [13],
or a constrained 3¢ order polynomial function [14]. The
technique proposed in this paper is a refined modelling
of the T wave by a piecewise linear function imposing
additional constraints. These constraints will account for the
decreasing behaviour of the ending part of the T wave (see
figure 2).

The outline of our PR intervals estimator algorithm is:

1. modelling of the decreasing part of the T wave by a piece-
wise linear function imposing additional constraints;

2. inclusion of the T wave modelling in our global observa-
tions model;

3. estimation of the PR intervals with our Woody Improved
method [7, 8]: an iterative estimation technique based on
Maximum Likelihood which includes Least Square prob-
lem with linear inequality constraints.

3. GLOBAL MODEL ESTIMATION

In this section, we explain the proposed modelling to take
into account the T-P waves fusion. The main improvement
is due to the addition of a decreasing piecewise linear
function, assumed to fit the ending part of the T wave, in the
observations model (see figure 2).
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Figure 2: Example of a real T wave modelled as a decreasing
piecewise linear function based on 3 basic functions.

Before the PR estimation, two pre-processing methods
provide us the position of the R waves and rough P wave
localizations [3]. A threshold technique applied on the high-
pass filtered and demodulated ECG, refines the estimation of
the time occurrences of the R waves. Then, we obtain seg-
ments including each P wave, and synchronized with its next
R wave. The length of the segments is fixed for all beats.
Whatever the heart rate, the left boundary of the segment
is adjusted in order to get only the decreasing part of the T
wave, and to ensure that the whole P wave is included (see
figure 2). In a real case, this condition is readily fulfilled and
the T wave should not be present in our observation window
for low heart rates.

We introduce a model where the observation x;(n) repre-
sents the sample in the segment i (for all ), of the considered
/" PR interval (with i = 1..1, I the number of realizations).
Each observation contains s, (n), considered unknown here,
assumed to be the P wave delayed by d; as s4,(n) = s(n—d;),
plus ¢;(n) an observation’s noise. Since the T-P fusion occurs
during exercise tests, we consider the T wave represented by
a function f(n;0;) linearly parameterized. Finally, our obser-
vations model is expressed as:

xi(n) = ai.sdi(n)+ai.fdi(n;9i)+e,-(n). (1)
Without loss of generality, the identifiability of the model
will impose a constraint such as Y,;d; = 0. Then the d;, con-
sequently the " PR interval, will be estimated up to an un-
known constant.
The T wave is considered as a piecewise linear function
f(n;0;), defined as a weighted sum of basic functions v;:

L
f(n;0;) = z 0i[1].v[n]. 2)
=1

We build a collection of L basic functions which defines L in-
tervals of width K. L and K are chosen arbitrarily such as the
length L x K corresponds to the expected maximal width of
the segmented decreasing part of the T wave. The accuracy
of this knowledge is not crucial. But it has to be chosen in ac-
cordance with the trade-off between the good approximation
of the T wave and the variance of the estimated weights of f
(2). Given the estimation process, increasing the number of
basic functions will reduce the approximation error while the
variance of the estimated weights increases.

As it will be shown in the sequel, this modelling will pro-
vide us a tractable solution that accounts for our a priori in-
formation concerning the T wave. So, it is expected that this
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knowledge reduces the bias avoiding the nonexistence of an
unique solution.

In the figure 2, we choose basic functions v; as piecewise
linear functions. In order to be consistent with the observa-
tions, some constraints are added:

e in each interval, a negative slope is imposed for any basic
functions combination;

e in order to keep the continuity of the modelled T wave,
the joining points between two consecutive intervals
must respect the following constraint: the last point of
the /" interval must be identical to the first point of the
(1+ 1) interval.

The aim is to build a collection of L basic functions. We
choose arbitrarily L = 3 as in the figure 2 (Note that L does not
influence a lot the bias of the estimator on simulated data.).
Therefore, we consider three intervals.

Choosing basic functions as in figure 2, on each interval,
forne [k xK: (k+1)x K] (with k =0...2), we model the T
wave by a linear function that is a weighted sum of two non
zero basic functions:

fln] = 61vi[n]+ 6va[n]; ne[0: K],

{ fﬂ = 0,.;[n]+ 65.v3n]; n € [K : 2K],

fln] =

03.v3[n]; n € 2K : 3K].

Moreover, we want to model the T wave by a decreasing
linear function, so we need to impose the following condi-
tions on each interval:

flln] = 61.v|[n]+6:,[n] <0;ne(0:K],

f:[n] = 92-":2[”] + 03.04[n] <0; n e [K:2K],

flln] = 63.3[n] <0; ne 2K :3K],
where f’ stands for the temporal derivative of f.

In order to obtain a tractable relation linking the coeffi-
cients 0;, we choose arbitrarily the 3 basic functions as:

Vi[n] <0;ne0: K],
vi[n] = —V[n]; ne [0: K], 3)
vy[n] = —Vi[n|; n e [K : 2K].

These relations imply that v; and v3 are decreasing

respectively on the intervals [0 : K] and [2K : 3K].

Imposing these properties to the basic functions, we need
to check the conditions of continuity at the joining points
(n= K and n = 2K) between two consecutive intervals. Thus,
for example when n = K, we get:

01.v1[K]+ 62.v2[K] = 6,01 [K] + 05.v3[K]. 4)
However, using (3), on each interval we obtain the relations:

vi[n] =—wmnl+Ci;nel0:K], )
w(n] = —v3[n]+Cy; n € [K: 2K],

where C; and C, are constant values.
By replacing in (4), the condition of continuity in K becomes:

(92 — 0 ).Vz[K] +0,.C; = (93 — 92).113 [K] + 60,.C;. (6)
We impose that v{[K] = v3[K] = 0, which implies given the
relations (5):

1% [K] = Cl,
{ »lK] = C. @
The condition of continuity (6) for n = K becomes:

92.V2[K] = (92 — 93).V2[K] + 05.C;.

Thanks to this relation and (7) we have C; = C, for all 6, so
the continuity for n = K is ensured.

Finally, when building a collection of L basic functions
such as in figure 2, we can apply these rules:

o the first basic function is decreasing on the interval [0: K]
and is null after,

o the last basic function is null for n € [0: (L —2)K] and is
decreasing on the interval [(L— 1)K : LK].

This implies that 6; must be positive in order to keep the
decreasing property of the modelled T wave. Besides, thanks
to the hypotheses (3) and (5), the constraints on the 6;’s are:

Vie[l:L—1], 6]1] > 6]l +1]>0. (8)

Note that the previous development has been given
without lack of generality since it is valid for any number of
basic functions, L.

Thanks to the proposed method, we can solve the
problem of estimation of the PR intervals, i.e. the d;’s, con-
sidering the observations model as (1). Indeed, we combine
the presented modelling of the decreasing part of the T wave
with our Woody Improved method [7, 8]. For the estimation
of the d;’s in this case, we modify our Woody Improved
method based on an iterative Maximum Likelihood (ML)
in order to transform it as a sum of Least Squares (LS)
problems. Also, one advantage of the presented approach
is that the inequality constraints introduced here (8) can be
easily included in the LS solution. For this purpose, the
LS with linear-Inequality constraints scheme (LSI problem)
converted in a Least Distance Programming (LDP problem),
is applied [15].

4. EXPERIMENTAL RESULTS

In this section we present some experimental results relative
to the technique proposed in this paper: a new T wave mod-
elling combined to our time delay estimation method. In a
first time, we valid our modelling for the T wave on syn-
thetic data of ECG, and in a second time we propose to apply
it on ECG.

4.1 Validation of the T wave modelling

The synthetic data of ECG in exercise are presented in figure
3. This ECG has constant PR intervals, and a time-varying
T-P distance. The overlapping ratio is higher as the beat
number increases. On figure 3, the extreme left-hand
side and the extreme right-hand side T waves correspond
respectively to the 50 and the 200" beat number.

Figure 4 shows the evolution of the bias between the real
PR intervals and the estimated ones (in function of the beat
number) obtained with our technique (thick blue curve).
This figure also shows the bias obtained with two other time
delay estimators: the green curve and the red dashed one are
using a T wave modelling based on a constrained 3" order
polynomial function [14] or a decreasing single straight line
[13], respectively. The black dotted curve corresponds to an
estimation of the PR intervals without any modelling of the
overlapping effect.
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Figure 3: Synthetic data of ECG in exercise. During exercise,
the T wave overlaps more and more the P wave.
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Figure 4: Bias of the time delay estimator for the three con-
sidered models.

We observe that whatever the technique used, the bias
is low when the T-P fusion does not exist. But when the
beat number increases, we observe that our technique
outperforms the others time delay estimators. It shows that,
at least in simulation, our T wave modelling is more accurate
than the previous ones when the overlapping appears.

4.2 Application to real ECG

Now we present some results on data acquired from real
exercise tests. The real ECG recordings are from 12 healthy
men: 5 Low Trained Athletes (LTA), 3 Moderately Trained
Athletes (MTA) and 4 Elite Athletes (EA). The definition of
these different groups of athletes is presented in the table 1.
The subjects performed a graded and maximal exercise test
on a cycle.

For all subjects, in order to estimate the PR intervals,
we compute the technique based on our Woody Improved
method combined with a T wave modelling by a decreasing
piecewise linear function (L = 3), presented in section 3. The
PR intervals estimation is computed on 10 iterations assum-
ing the algorithm convergence at the end. We obtain for each
subject a result similar to figure 5 which presents the evolu-
tion of the PR intervals up to an unknown offset.

50 Interval for the calculation of the slope \
or B

PR interval (ms) + offset
|
&

| rest exercise recovery |

Dy

0 . . . SR
0 500 1000 1500 2000 2500 3000
Beat number

Figure 5: PR intervals for one subject. The interval used
for the calculation of the slope S, indicative of the “recovery
rate”, is delimited by the two dotted vertical lines.
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Figure 6: Relationship between the slope of the evolutions of
the PR and RR intervals for the 12 subjects. Two groups can
be clustered according to the PR slopes: one constituted by
the low trained athletes, and the second by the remainder.

LTA MTA EA
Hours of training/week | <5 | S5<and <10 | >10
Vo, max [ml/min/kg] <55 | 55<and <65 | >70

Table 1: Definition of the differently trained athletes.

As noted in a previous work [13], it exists during re-
covery, an abrupt change of slope of the PR intervals which
is significantly correlated with the RR’s one. The location
of this change of slope is specific for each subject. Thus,
for all subjects, we calculate the slopes of the PR and RR
intervals on a specific time interval. This latter is delimited
by the dotted vertical lines on figure 5 between the end of
the exercise and the abrupt change.

Figure 6 relates the slopes of the PR and RR intervals for
the 12 subjects of our study. The slopes of the PR intervals
are lower than those of RR intervals, which is expected since
the total variation of the PR intervals is lower. Besides, we
observe that for the low trained athletes, the slopes of the PR
evolution are significantly lower.

It is clear that from the figure 6, two groups can be clustered
according to the PR slopes: one for the low trained subjects,
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and another one for the remainder. In order to confirm this
observation, we have used a k-means clustering algorithm
on our data set. This algorithm confirms these clusters
according to the slope on PR intervals. Indeed, while
exploiting data of both PR and RR intervals, we obtain
33% of misclassification, 60% considering the data of the
RR intervals only and 0% considering the data of the PR
intervals only. This confirms the clustering but also the
difficulty to distinguish the moderately trained and elite
athletes.

5. CONCLUSION AND FUTURE WORKS

In this paper, we aim to determine the PR intervals from ECG
recorded in exercise test. But the localization of the P wave
is a real challenge when the T wave overlapping appears at
high heart rates. In this study, we propose an extension of the
previous models [13, 14]: we fully describe the modelling
by a decreasing piecewise linear function for the presence
of the T wave merging in the P one. We include it in our
Woody Improved method based on an iterative Maximum-
Likelihood approach for the PR intervals estimation [7, 8].
On synthetic data, we conclude that our method combined
with the new modelling exhibits better performances than the
previous ones according to the bias of the estimators, espe-
cially when the overlapping ratio is high.

Furthermore, the exploitation of the PR intervals estimation
on real data exhibits a previously found phenomena [14]:
for the low trained athletes, the slope of the PR intervals in
the early phase of the recovery is lower than for moderately
trained and elite athletes. It is known that despite similar
resting heart rate and stroke volume, athletes compared to
sedentary men significantly enhance stroke volume, ven-
tricular filling, and cardiac contractility during incremental
exercise [16]. This suggests that it could exist a mechanical
effect on the atrioventricular node more important for trained
athletes which could explain the difference of the PR slopes
between the low trained and the high trained athletes.

This work presents several perspectives. For instance,
the method assumed a fixed segmentation window synchro-
nized with the R wave. A refinement to this definition would
be to adapt its position using the Bazett correction or any
Q-T predictor [17]. Also, thanks to the estimation of the
derivative when the signal is embedded in noise [18], we
could find the position of the maximum of the T wave and
build a matched window.

Note also that this method could be easily applied for the
problem of the QT or ST intervals estimation, recorded in
exercise test, accounting for a similar P wave modelling.
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