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ABSTRACT

Numerous applications demand that we manipulate large sets
of very high-dimensional signals. A simple yet common ex-
ample is the problem of finding those signals in a database
that are closest to a query. In this paper, we tackle this prob-
lem by restricting our attention to a special class of signals
that have a sparse approximation over a basis or a redundant
dictionary. We take advantage of sparsity to approximate
quickly the distance between the query and all elements of
the database. In this way, we are able to prune recursively all
elements that do not match the query, while providing bounds
on the true distance. Validation of this technique on synthetic
and real data sets confirms that it could be very well suited to
process queries over large databases of compressed signals,
avoiding most of the burden of decoding.

1. INTRODUCTION

The tremendous activity in the field of sparse approxima-
tion [1, 2, 3] is strongly motivated by the potential of the-
ses techniques for typical tasks in signal processing such as
denoising, source separation or compression. Given a signal
f in the space of finite d-dimensional discrete signals Rd ,
the central problem of sparse approximation is the follow-
ing: compute a good approximation f̃N as a linear superposi-
tion of N basic elements picked up in a collection of signals
D = {φk} that spans the entire signal space, referred to as a
dictionary :

f̃N =
N−1

∑
k=0

ckφk, φk ∈ D , ‖ f − f̃N‖2 ≤ ε . (1)

The approximant f̃N is sparse when N % d and is called a
sparse representation if additionally ‖ f − f̃N‖2 = 0.

If D is an orthogonal basis, it is easy to solve (1) for the
best approximant. However, for a generic redundant dictio-
nary the problem becomes much more complicated and at-
tempts at solving it have sparked an intense research stream.
This paper however does not deal with algorithms to com-
pute sparse approximations. In fact we will assume that we
are given sparse approximations of signals and we will ig-
nore how they have been computed. We will however require
that our approximants possess a particular structure. Suppose
first that the terms in (1) are re-ordered in decreasing order
of magnitude, i.e such that | c0 |≥| c1 |≥ · · ·≥| cN−1 |. Strict
sparsity requires that the number of non-zero coefficients N
be small. However we can slightly relax this definition by
asking that the magnitude of the coefficients drops quickly

to very small values such that there are only few big coeffi-
cients. A signal that is well approximated by such an expan-
sion over a dictionary is termed compressible, highlighting
the idea that most of the information is contained in few co-
efficients [4]. Usually, and that is the case in this paper, the
sorted coefficients are assumed to follow a power-law decay;
the ith largest is such that:

| ci |≤ C i−γ , (2)

for γ ≥ 1 and some positive constant C. The decay parameter
γ may depend on both the signal and dictionary.

Dictionaries used to define the class of compressible sig-
nals need not be redundant. Piece-wise smooth signals for
example are compressible on wavelet bases and that charac-
teristic is at the heart of the good performances of wavelets
for compression or denoising [5]. For simplicity we will re-
strict our scope to signals that are compressible over orthog-
onal bases.

With the advent of digital cameras and portable music
players, modern digital signal processing has also to face the
challenge of voluminous databases of signals. Clearly, signal
processing algorithms must be adapted to problems where
large collections of signals are involved. Finding the near-
est neighbor in a database is fundamental for many applica-
tions; [6] presents a good overview of this field. Generally,
when the data is lying in a high dimensional space, a dimen-
sionality reduction step is used to lower the complexity of
the query. In the field of signal processing, the dimensional-
ity reduction resulting from the sparsity of an approximation
has been exploited for different tasks such as analysis, de-
noising or compression. Roughly speaking, the sparser the
representation, the better it is for applications. In this paper,
we explore how sparsity can be used to handle huge amount
of data at a lower cost. More precisely, we tackle the prob-
lem of computing in an efficient manner the correlation of a
single query signal with a huge set of compressible signals.
Our algorithm uses only the components ck, φk of the signal
model (1), hence can be seen as working in the transform do-
main. Since compression is key in storing large collections
of signals, we thus potentially avoid the extra burden of hav-
ing to fully decode large amounts of data for searching or
browsing through the database.

In Sections 3 and 4 we derive an algorithm to compute
efficiently the projection of a signal on a set of signals, when
both the query and all elements of the set are compressible.
Section 5 presents different experiments to illustrate the dif-
ferent bounds as well as the algorithm itself. We conclude
in Section 6 on the benefits of this new approach and list the
perspectives we will consider.



2. PRIOR ART

Before moving on to the core of this paper, let us briefly de-
scribe how our contributions can be compared with existing
techniques. The field of nearest-neighbor algorithms is very
wide and still extremely active, we thus certainly couldn’t
hope to provide here a fair survey. However, we would like
to highlight some key results and orientations and this will
also allow us to specify constrains used in our framework.

Finding the nearest neighbor of a query in a set F of
I d-dimensional vectors can be solved by brute force with
O(dI) operations. Clearly, when I is big (and that is the
case in most applications), this could be prohibitive. A lot
of work has been devoted to trying to reduce the amount of
computations needed to deal with large data sets. Most of the
recent approaches have a cost scaling like O(expd log I) pro-
vided the data base is first pre-processed to create efficient
data structure [7, 8, 9, 10]. It has to be noted that a compu-
tational cost exponential in d does not improve on the brute
force technique when d is large enough, i.e d > log I, the so
called curse of dimensionality. Various algorithms have been
proposed to solve this problem, with complexity that roughly

scales in O(dβ polylog(dI)), for some β > 1 and an appro-
priate data structure [6, 11, 12].

This short survey brings us to our main constrain. In
this paper, we target applications in user centric multimedia
databases, i.e images, audio that reside on the user’s com-
puter, and in this setting we cannot afford large preprocessing
time. More particularly we must be able to add and remove
entries in the database at no cost. We don’t extract low di-
mensional feature vectors from our signals. Instead we use
sparse representations both for compression and description
of the data. Our data structure is thus simple and forced upon
us: the description of each item in terms of the coefficients
and atoms’ indexes in 1. As for how sparsity N depends on
the dimension d, it is hard to give a precise rule. Though
N is much smaller than d, we will assume that is scales lin-
early with d. We thus have high-dimensional vectors in our
database.

3. ITERATIVE CANDIDATE REJECTION

Let us consider a set of compressible signals F = { f i}I
i=i:

f i =
N

∑
j=1

ci
jφki

j
. (3)

where φki
∈ D . The vector ki indexes terms in decreasing

order of coefficients magnitude. Note that we have voluntar-
ily discarded the N-term approximation error in (3), and we
will keep on doing so from now on. We will discuss later the
influence of this term.

The aim of this paper is to provide an efficient method to
find, in the set of signals F , the one that is closest to a query

signal g = ∑
Ng

l=1 blφkl
that is also compressible with Ng ≤ N

terms. The magnitudes of the projections are also decreasing
with l. The scalar product 〈 f i | g〉 between a signal from the

set and the new one can be written as follows:

〈 f i | g〉 = 〈
N

∑
j=1

ci
jφki

j
|

Ng

∑
l=1

blφkl
〉,

=
N

∑
j=1

Ng

∑
l=1

ci
jblGki

j ,kl
. (4)

where Gki
j ,kl

= 〈φki
j
| φkl

〉 is an entry of the Gram matrix of

the dictionary D , i.e Gki
j ,kl

= δki
j ,kl

for an orthonormal basis.

The aim of the algorithm is to exploit sparsity, i.e Ng,
N % d, in order to find the best matching signal. It is done
by eliminating rapidly the signals whose scalar products with
the query is too small. To do so, we rewrite the scalar product
presented in eq. (4) as follows:

〈 f i | g〉 =
N+Ng

∑
k=2

si
k, (5)

where si
k represents the part of the scalar product coming

from atoms participating in both decompositions such that
the sum of j and l is equal to k. For the ith signal of the set
F , it corresponds to:

si
k = ∑

j,l
j+l=k

j≤N,l≤Ng

cki
j
bkl

Gki
j ,kl

. (6)

The signals of the set F and the query g are compress-
ible. According to eq. (2), there exists γ and a constant C
such that | cki

j
|≤C j−γ and | bkl

|≤Cl−γ . One can thus bound

the magnitude of si
k as follows:

| si
k |≤ ∑

j,l
j+l=k

j≤N,l≤Ng

C2 j−γ l−γ (7)

When searching for the best matching signal in a huge
set F , it is of great interest to be able to eliminate in an
early stage the signals that have no chance to match. If the
scalar product is computed in an iterative way, our aim is to
eliminate signals by estimating at each step an upper and a
lower bound of the final scalar product, which is possible by
using the bound presented by eq. (7). To do so, let us first
define:

Si
K =

K

∑
k=2

si
k, (8)

which represents the part of the scalar product 〈 f i | g〉 found
by taking into account the atoms whose sum of indices is
smaller or equal to K. Using the same formalism, it is possi-
ble to express the missing part of the scalar product:

Ri
K =

N+Ng

∑
k=K+1

si
k. (9)

If we had kept track of the approximation error in our ini-
tial model (3), we would have to add it to this residual. We
simply assume that this error is sufficiently smaller than the
typical values of Ri

K we will be working with. If the signals



are well-compressible, this will be the case and this is indeed
what our simulations suggest. Using the two preceding equa-
tions, let us express the scalar product as 〈 f i | g〉 = Si

K + Ri
K ,

∀2 ≤ K ≤ N + Ng. The value of Si
K can be computed itera-

tively as Si
K = Si

K−1 + si
K .

When looking for the signal that is most correlated with
the query, one computes the absolute value of the scalar prod-
uct, disregarding the sign of the projection. Thus, ∀2 ≤ K ≤
N + Ng the following relation holds:

| Si
K |− | Ri

K |≤| 〈 f i | g〉 |≤| Si
K | + | Ri

K | . (10)

Using eq. (7), it is possible to upper bound the residual
part of the correlation | Ri

K |.

| Ri
K |≤

N+Ng

∑
k=K+1

| si
k |≤C2

N+Ng

∑
k=K+1

ck,N,Ng(
k2

4
)−γ = R̃i

K , (11)

where ck,N,Ng is the number of possible products between
atoms such that the sum of their indices is equal to k and
knowing that we have N terms for f i and Ng terms for the
query:

ck,N,Ng =















k−1 if 2 ≤ k ≤ Ng + 1;

Ng if Ng + 1 < k ≤ N;

N + Ng − k + 1 if N < k ≤ N + Ng;

0 otherwise.

(12)

Using the bound R̃i
K defined in eq. (11) it is possible to

upper and lower bound the correlation at any iteration K as
follows :

mi
K ≤| 〈 f i | g〉 |≤ Mi

K , (13)

where mi
K =| Si

K |−R̃i
K and Mi

K =| Si
K |+R̃i

K are respectively
the lower and the upper bound. It is obvious that if ∃K s.t.

M
j
K < mi

K then | 〈 f i | g〉 |>| 〈 f j | g〉 |. This principle is il-
lustrated by fig. 1 where the maximal value some candidates
could eventually reach is lower than the worst case of the
best matching candidate. The pseudo-code illustrating the
proposed algorithm is presented by table 1.

1 2 3 4 5 6 7 8

Candidates

Figure 1: Elimination of candidates 2,6 and 7.

Algorithm 1 Find best matching signal in a database of
exact-sparse N-terms signals

INPUTS: A signal g = ∑
Ng

i=1 aiφi, gi ∈ D .
A set of signals F having a exact-sparse representation
using N terms.
The Gram matrix G of the dictionary used to represent the
signals.
OUTPUT: mini | 〈 f i | g〉 |, the index of the signal that best
matches g.

INITIALIZATION: P = {i}‖F‖
i=1 the indices of the signals

in the set F .
K = 2.
Si

1 = 0, ∀i.
while card(P) > 1 do

Compute all Si
K = Si

K−1 + si
K.

Compute all mi
K and Mi

K .

S = { f i}Mi
K<maxi mi

K

P = P\ S.
K = K + 1.

end while

4. AN AVERAGE CASE APPROACH

The worst case bounds presented in the previous sections are
based on the hypothesis that the signs of the scalar products
between atoms conspire against us. These worst case hy-
pothesis are far from typical cases. It is straightforward to
see that if the signs are positive or negative with equal prob-
ability, then the sequences si

k (for sufficiently big values of
k) would be zero mean. Results in the field of concentration
of measure show that functions defined on a large probabil-
ity space most of the time take values that do not fall too far
away from the average case. We will now use these tech-
niques to obtain much sharper bounds for Ri

K . However we
will have to accept that these bounds hold with high proba-
bility and not with absolute certainty.

Without loss of generality, we assume that the coeffi-
cients are always positive. The dictionary could simply be
augmented to contain also all opposite atoms so that this
property holds. At each step of the algorithm, we estimate
the following amplitude:

| Ri
K | = |

2N

∑
k=K+1

si
k | (14)

= | ∑
j,l

j+l≥K+1
j≤N,l≤N

ci
jblGki

j ,kl
| . (15)

First, let suppose that the worst case is met for the val-
ues of the Gram matrix but that the corresponding signs are
random, +1 or −1 with probability 1

2 . From these consider-



ations, we rewrite the previous equation as follows:

| Ri
K | = |

2N

∑
k=K+1

si
k | (16)

= | ∑
j,l

j+l≥K+1
j≤N,l≤N

ε j,lcki
j
bkl

| (17)

= | ∑
n

εnan | . (18)

where ∑n εn is a Rademacher sequence i.e. εi is +1 or −1
with equal probability. It is well known (see for exam-
ple [13]) that such sums concentrate sharply around typical
values. Indeed, let a be a real vector and ε a Rademacher
sequence. Then ∀t > 0

P(| ∑
n

εnan |≤ t) ≥ 1−2e−
1
2 t2/‖a‖2

2 . (19)

Since the magnitude of the coefficients are bounded, the en-
tries of a are also bounded and this gives us a simple upper
bound of its l2-norm. It is then easy to find an upper bound

R̃i
K for a given probability p by solving 1−2e−

1
2 (R̃i

K)2/‖a‖2
2 =

p. This bound will be discussed in our experiments (Section

5) for different values of p. Note that R̃i
K is influenced in a

unfavorable way by the l2-norm of a.

5. EXPERIMENTS

Our first experiment is dedicated to assessing how much our
algorithm is sensitive to the choice of the probability thresh-
old p. A set of 7200 images from the COIL-100 database
[14] where approximated with 200 terms of a wavelet decom-
position (i.e the dictionary is an orthogonal basis). The im-
ages are of size 128×128 and the filter used for the wavelet
transform is a Daubechies of length 20. The database of sig-
nals is made of 2500 randomly chosen images and the other
ones where used to test the algorithm. Figure 2 shows that
the cardinality of the set of potential signals decays quickly
with the number of iterations. Different parameters p have
been used to obtain the bound, but this didn’t change signifi-
cantly the behaviour of the algorithm. Moreover, it has to be
noticed that the algorithm always found the best signal in the
database.

We thus fixed p = 0.9 and turned to a real set-up for eval-
uating the quality of the system on the COIL-100 database
[14]. A simple pretreatment consisting in normalizing the
energy of the images has been done. The database con-
tained 1500 images chosen randomly and all the images of
size 128x128 were approximated using 1000 terms. Figure 4
presents the evolution of the cardinality of the set of potential
candidates during the first 85 steps. The following steps are
presented by figure 3. The first row presents the query image
and the images present in P after 85 steps reconstructed using
1000 wavelets. In the next rows, the images are reconstructed
using only the wavelets that have been taken into account by
the algorithm at this step. The algorithm is efficient in elimi-
nating signals that are not from the good class. The four last
rows contain the same object and as they are very similar,
the algorithm needs many steps to finally identify the single
best one. However, as the cardinality of the set of potential
candidates is very low, the complexity is low too.
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Figure 2: Cardinality of the set of potential candidates dur-
ing the execution of the algorithm for images approximated
with wavelets. The parameter p controls the probability of
rejecting candidates in the Rademacher model, eq. (19).

6. CONCLUSIONS

The sparse structure of compressible signals offers a rather
straightforward way to reduce the dimensionality of complex
signals. In this paper, we have exploited this structure to re-
cursively localize those elements of a large set of signals that
are closest to a fixed query. Our technique requires two fun-
damental inputs. First, the coefficients of the expansion of
each signal in the database must be stored and easily accessi-
ble. Note this is not a particularly stringent requirement since
it is very likely that one would store compressed signals, us-
ing precisely the sparsity of their representation over a given
basis or dictionary. Our technique is then able to work on
the compressed signals, in the sense that one doesn’t have
to reconstruct them for processing. Second, the gram matrix
of the dictionary used to express signals must be stored or
computed, too. If this not a problem when the dictionary is
a orthogonal basis, it could be a severe limitation in the case
of a general redundant dictionary since the gram matrix is a
priori large and without particular structure. However, the
gram matrix entries of many dictionaries used in practice can
be computed in a fast way.

We showed that is possible to maintain deterministic or
probabilistic bounds on the true distance between the query
and the tested signals. Clearly though, probabilistic bounds
are much more favorable than our worst case deterministic
bounds. Indeed, we presented clear experimental evidence
showing the ability of the algorithm to eliminate non suitable
candidates at early stages.

In view of the recent results in compressed sensing, one
may wonder wether it would be possible to avoid computing
sparse approximations over a fixed dictionary since most of
the information of compressible signals can be captured by
random projections [15]. Exploring the possibility of work-
ing solely with random projections will be one of our future
research directions.
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