
NEW ALGORITHM FOR NONNEGATIVE MATRIX FACTORIZATION USING
GIVENS PARAMETERIZATION

El Mostafa FADAILI and Antoine SOULOUMIAC

CEA, LIST, Laboratoire des Processus Stochastiques et Spectres, F-91191 Gif-Sur-Yvette, France.
phone: + 33 (0)1.69.08.84.91, fax: + 33(0)1.69.08.78.19

email: fadaili.el-mostafa@cea.fr, antoine.souloumiac@cea.fr

ABSTRACT

In this paper, the problem of nonnegative matrix factoriza-
tion (NMF) is considered. It is formulated as the optimiza-
tion of a criterion with bound constraints. We propose an
approach based on Givens parameterization of some pos-
itive vector, and criterion minimization is achieved using
Levenberg-Marquardt algorithm. The performance of the de-
veloped NMF method is illustrated for the separation of a

linear mixture of images. 1

1. INTRODUCTION

Nonnegative matrix factorization (NMF) was first introduced
by Paatero in [14] and reformulated by Lee in [7]. NMF
decomposes the data matrix as a product of two matrices that
are constrained by having nonnegative values.
Given an m×n (m ≤ n) matrix V with Vi j ≥ 0,∀i, j and r ∈
N
∗ < min(m,n), NMF finds two nonnegative matrices W of

size m× r and H of size r × n such that they minimize the
functional

C(W,H) = ‖V−WH‖2
F , W,H ≥ 0, (1)

where ‖.‖ denotes the Frobenius norm.

NMF has been used in several research areas such as
biomedical imaging [8, 15], spectroscopy [3, 13], poly-
phonic music transcription [16], among others. The growing
interest for this decomposition technique in addition to the
dimensionality reduction is due to the fact that in many
applications where observed data in matrix V can only
take nonnegative values (for example pixel in imagery data
or molecular mass intensity in mass spectroscopy), the
solutions of NMF are nonnegative and can be physically
meaningful. Notice that in the general case, the nonnega-
tivity constraint is not guaranteed by using PCA (Principal
Components analysis) or ICA (Independent components
analysis) techniques [2].

One of the most popular algorithm to solve (1) was
proposed by Lee and Seung in [7]. The approach is based
in multiplicative update rules for both W and H: after
initialization by two nonnegative matrices, the elements of
W and H are multiplied by certain factor at each iteration
until convergence or after kmax iterations. The method is
very simple to implement and preserves nonnegativity at
each iteration. Unfortunately, this algorithm is known to
be notoriously slow to converge and still lacks convergence
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results.
In order to overcome some of these shortcomings, many
modifications were proposed later to accelerate the conver-
gence [4] or to guarantee the convergence to a stationary
point using projected gradient methods [10]. However, the
results of these methods depend widely on the initialization
matrix and still present some convergence problems.

We propose in this communication a new approach to
optimize criterion (1) which exhibits interesting optimiza-
tion properties and convergence rate when compared to
the previous methods. This new approach is based in a
parameterization with Givens rotation and an optimization
with the Levenberg-Marquardt algorithm which is known to
be more robust than the gradient descent one.

2. ALGORITHM

2.1 Givens parameterization of positive unit norm vec-
tor

A parameterization of any real positive unit-norm vector w
with r entries can be provided by a sequence of Givens rota-
tions:

w = R1(α1)R2(α2) . . .Rr−1(αr−1)e1 (2)

where

Ri(αi) =









ci . . . −si . . . 0
Ii−1 . . . 0

si . . . ci . . .
...

0 . . . Ir−i−1









, (3)

and

ci = cos(αi),si = sin(αi),0 ≤ αi < π/2, (4)

where the r− 1 constraints 0 ≤ αi < π/2 are indispensable

to keep w nonnegative and e1 = [1,0, . . . ,0]T of size (r×1).
The parameter vector associated to w(α) is α =
[α1, . . . ,αm−1]

T .
For nonnegative matrix W with unit-norm column vectors
wi(αi), with αi = [α1,i, . . . ,αr−1,i]

T , i ∈ {1, . . . ,r}, it can be
parametrized by a vector θ = vec([α1, . . . ,αr]), where the
vec{.} operator vectorizes a matrix by stacking its columns
(it is convention that column rather than row stacking is
used).



2.2 Levenberg-Marquardt optimization

We assume here that matrix W is parametrized by unique
parameter W = W(θ). Let us consider the criterion:

C(θ) = ‖V−W(θ)H‖2
F

= ‖vec(V−W(θ)H)‖2

= ‖f(θ)‖2

where f(θ) = vec(V−W(θ)H).

In order to minimize this quadratic criterion, we pro-
pose to use a Levenberg-Marquardt (LM) optimization
scheme [9, 11] which has become a suitable technique for
non-linear least-squares problems.
We define the Jacobian J(θ):

J(θ) = [
∂ f(θ)

∂θ1
,
∂ f(θ)

∂θ2
, . . .], (5)

and the gradient g(θ) of C(θ):

g(θ) = 2{J(θ)T f(θ)}.

Finally, the Hessian can be approximated by:

Hs(θ) ≈ 2J(θ)T J(θ).

The LM update step is given by:

θ k+1 = θ k − (µkI+diag(Hs(θk)))
−1g(θ k) (6)

where the operator diag{.} denotes the diagonal matrix con-
structed from diagonal elements of its argument, µk is non-
negative scalar and I is the identity matrix. We will give here
the explicit form of matrix J(θ). For a given column vector
wl(αl), 1 ≤ l ≤ r, we consider the vector of derivatives

F(αi,l) =
∂ f(αi,l)

∂αi,l

= vec(
∂ (V−W(α)H)

∂αi,l
)

= −vec(
∂w(αl)

∂αi,l
Hl),

where
∂w(αl)
∂αi,l

expression is given in appendix and Hl is a row

vector of matrix H.
Then, the Jacobian J(θ) reads:

J(θ) = [F(α1,1),F(α2,1), . . . ,F(αm−1,r)] (7)

To minimize criterion (1) for both H and θ , we propose to
use alternate multiplicative update rule for H proposed in
[7] and LM update equation (6) for W. In fact, the same
parameterization can be chosen for the row vectors of H,
and because of high computational cost of this operation (in
practice, the matrix H is very large), we consider a simple
multiplicative rule for estimation of H. Then, the scheme of
our proposed method reads:

1. Initialization by θ 0 and H0.

2. Calculate the Jacobian from (7)

3. Update H and θ :

Hk+1
i j = Hk

i j(W(θ k)T V)i j/(W(θ k)T W(θ k)Hk)i j

θ k+1 ≡ (θ k − (µkI+diag(Hs(θ k)))−1g(θ k))[π/2]

4. Update µk taking into account the error ∆C(θ ,H)

5. Repeat from 2 until ‖∆C(θ ,H)‖ < ε or k = maxiter

where maxiter is the maximum number of iterations and
≡ [.] denotes the congruent operator. The use of congruent
operator ≡ [π/2] for updating θ enforces the nonnegative
values for the matrix W(θ).

Concerning the initialization of the algorithm, most of
the NMF algorithms use simple random initialization, i.e.,
W and H are initialized as matrices of random numbers
between 0 and 1. It is known that this kind of initialization
does not generally provide a good first estimate of NMF al-
gorithm. Another alternatives to this initialization: centroid
initialization [17] or nonnegative SVD decomposition [1]
can also be used.
As it is classical in LM implementation, the values of µk

during the iterative process are chosen in the following
way: at the beginning of the iterations, µ0 is set to a large
value, and in each iteration, if ∆C(θ ,H) < 0, decrease µk

by certain amount (divided by 10 for example) to speed up
the convergence; otherwise, increase µk value to enlarge the
searching area (trust-region).

However, regarding the monotony of the algo-
rithm, Lee and Seung have proved that the objective
function decreases; i.e., for two successive itera-
tions k and k + 1, we have ‖V − W(θ k)Hk+1‖2

F ≤

‖V − W(θ k)Hk‖2
F . However, the LM algorithm for

updating θ ensure decreasing (with constant H), so

‖V − W(θ k+1)Hk+1‖2
F ≤ ‖V − W(θ k)Hk+1‖2

F . We

conclude that ‖V−W(θ k+1)Hk+1‖2
F ≤ ‖V−W(θ k)Hk‖2

F
and so the decreasing of objective function. Nevertheless,
our algorithm contains a modulo [π

2
] step, thus general

convergence results of the LM algorithm are not valid here,
but seems to not affect the convergence of the method.
Finally, the complexity of the proposed algorithm is higher
than [7], due in particular to the Hessian inversion operation.

3. APPLICATION TO IMAGES SEPARATION

The effectiveness of the proposed method has been il-
lustrated for blind separation of images. This is suitable
for nonnegative matrix factorization since the pixels have
nonnegative values.
The n = 3 gray images used in this simulation are shown in
Figure 1. The images are 128×128 with integer pixel inten-
sities in [0,255]. Matrix H of size 3× 1282 is constructed
from the vectorization of the previous images with unit norm
row vectors. Figure 2 shows m = 9 mixtures of the 3 images
with random matrix W distributed uniformly between 0 and
1.



Figure 1: The n = 3 gray source images of size 128×128.

Figure 2: The m = 9 mixed images of Figure 1 by random
matrix W distributed uniformly between 0 and 1.

We denote by nmfgivens our proposed method and we
will compare it with two other methods:

• nmfmult: nonnegative matrix factorization by multi-
plicative update rule [7];

• nmfpgrad: nonnegative matrix factorization using pro-
jected gradient method [10].

To measure the performance of the previous methods, we
propose to use two different criteria. The first one is based
on the quadratic reconstruction error between V and the es-

timated nonnegative matrices Ŵ,Ĥ:

errre =
‖V−ŴĤ‖2

F

‖V‖2
F

(8)

The second one is the following performance index which
measures the separation quality [12]:

errs(G) =
1

r(r−1)

r

∑
i=1





r

∑
j=1

|(G)i, j|
2

max
`

|(G)i,`|
2
−1





+
1

r(r−1)

r

∑
j=1





r

∑
i=1

|(G)i, j|
2

max
`

|(G)`, j|
2
−1



 ,

with r being the dimension of the square matrix G = Ŵ†W
and † denotes the pseudo-inverse operator.

Figure 3 shows the performance index errre versus iter-
ation number. All methods are initialized by the same
uniform random positive matrices W0 and H0. From the
graph it is seen that nmfgivens gives better performance than
nmfmult in terms of objective function minimization, but
still less good than nmfpgrad one because of the update of
the matrix H. In Figure 4, the performance of nmfgivens
is well improved using projected gradient estimation of the
matrix H.
The values of the performance index errs are reported in
Figure 5 for two different random initializations where the
separation quality is better with nmfgivens. Figure 6 shows
the reconstructed 3 sources from the mixture of the Figure 2.

0 5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

nmfgivens

nmfmult

nmfpgrad

0 5 10 15 20 25 30 35 40 45 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

nmfgivens

nmfmult

nmfpgrad

Figure 3: The performance index errre versus iteration num-
ber for nmfgivens, nmfmult, nmfpgrad.

4. CONCLUSION

In this paper, we have considered the problem of nonnegative
matrix factorization and we have proposed a new approach
based in a Givens parameterization of the mixing matrix and
Levenberg-Marquardt optimization of some quadratic crite-
rion.
Simulations on image data show that the proposed method
gives much better results both in terms of criterion optimiza-
tion and separation quality, when compared to classical algo-
rithms for solving NMF.
As a future issue, it is interesting to investigate how to gen-
eralize the proposed method to the NMF problem taking
into account the property of sparsity [5, 6]. The sparsity is
achieved generally by adding some penalty term to the NMF
objective function. Finally, the study of the behavior of the
proposed method in noisy model can also be considered.
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Figure 4: The performance index errre versus iteration num-
ber for nmfgivens, nmfmult, nmfpgrad. The estimation of H
in nmfgivens is done using projected gradient method.
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Figure 5: The performance index errs versus iteration num-
ber for two different random initializations of θ between 0
and π

2
and H is initialized by [1] .

Figure 6: The 3 sources recovered using proposed nmfgivens
algorithm.



APPENDIX

The derivative of vector w(θ) of size (N × 1) parametrized
by a vector θ = [α1, . . . ,αN−1] to each of the N −1 parame-
ters reads:

∂w

∂αi

= R1(α1)R2(α2) . . .Ri−1(αi−1)R
′

i(αi)Ri+1(αi+1)

. . .RN−1(αN−1)e1

where

R
′

i(αi) =







−si −ci

0i−1

ci −si

0N−i−1







and e1 = [1,0, . . . ,0]T .
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