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ABSTRACT
In this paper, a multiple-access transmission scheme based on ran-
dom permutations is studied. This scheme provides both a spectrum
spreading and a time spreading, combined with a chip interleaving.
One considers asynchronous transmissions on frequency-selective
and time-varying channels. It is assumed that the channel coeffi-
cients are unknown by the receiver, and that only vague estimates
of the minimum and maximum delays are available. In such a con-
text, an LMS algorithm is used to solve the bit detection problem.
Theoretical performance results are given. Moreover, this random
permutation-based scheme is compared with the DS-CDMA system,
for which an equivalent LMS detector is developed in the same con-
text.

1. INTRODUCTION

Spectrum spreading is one of the main characteristics of the multiple
access schemes used in 3G communications systems. In particular,
most of these schemes employ techniques based on code division.
However, it is possible to define other spectrum spreading multiple-
access schemes, which present similar spreading capabilities. This
paper addresses in particular a spectrum spreading technique based
on random permutations, which will be named Random Permuta-
tion Multiple Access (RPMA). The basic idea of this scheme con-
sists of randomly permuting the samples of an input data block in
order to spread the data both in time and in frequency. The inter-
est of such a technique is that the bit energy is spread in time (and
not only in frequency), by using a kind of chip-interleaving; this al-
lows to mitigate the effects of the channel fading, in particular when
the channel is time-varying. The concepts of block-spreading and
chip-interleaving are not new. For instance, in [1] is proposed a
technique based on a row-column matrix interleaver combined with
the use of Walsh-Hadamard codes. In [2] is investigated another
technique which resorts to so-called shift-orthogonal codes. How-
ever, the methods proposed in these papers assume synchronous or
quasi-synchronous transmission. Also, chip-interleaving is investi-
gated for instance in [3] and related works, and in [4], where the
detection is achieved using a turbo-decoding. It is assumed in these
articles that the channel coefficients and/or delays are known by the
receiver. However, the channel estimation in asynchronous multiple-
access systems is a difficult problem. In the present paper, the case
of asynchronous transmissions on time-varying frequency-selective
channels is addressed, where channel coefficients and delays are un-
known. Different papers have already been published on this topics
(e.g. [5], [6]). In each of them, a comparison with the DS-CDMA
system has been provided. However, in [5], the channel delays were
assumed to be known by the receiver (while the channel coefficients
were actually unknown). Here, it is only assumed that rough esti-

mates of the minimum and maximum delays are available for each
user. Moreover, the matched-filter bank used in [5] is replaced by a
classical uniform sampling, which dramatically reduces the dimen-
sion of the problem. As in [5], a Least-Mean-Squares (LMS) al-
gorithm is used to manage the fact that the channels are unknown.
Obviously, the resort to the classical LMS algorithm does not con-
stitute the originality of the paper. This one rather relies on the use
of a new spectrum/time spreading technique, which gives generally
better detection performance results than those of the DS-CDMA
system, for equivalent transmission characteristics.
Section 2 presents the signal modeling in RPMA systems. The de-
tection problem is addressed in section 3 for the RPMA system,
along with the similar detection problem derived for the DS-CDMA
system. Theoretical performance results are given in section 4, and
some simulation results are presented in section 5.

2. SIGNAL MODELING

2.1. The permutation process
Let (bn)n∈Z (bn ∈ {−1;+1}) be a sequence of equiprobable bits.
This sequence is modulated by an antipodal baseband code with du-
ration T and waveform pattern m(t). The modulated process Z(t),
defined by Z(t) , ∑n∈Z bnm(t−nT ), is sampled with period Ts,
such that Ns , T/Ts is an integer number (i.e., Ns is the number of
samples per bit). Let (Zn)n∈Z denote this sampled sequence. A new
sequence (Un)n∈Z is formed from (Zn)n∈Z as follows: considering
blocks of Nb consecutive bits, the NsNb samples of Zn corresponding
to a given block are permuted using an uniformly distributed permu-
tation of the set {1, . . . ,NsNb} . The sequence (Un)n∈Z is defined as
the resulting sequence of this block permutation. One can then show
that the power spectral density of (Un)n∈Z is spread by a factor Ns
with respect to the one of (Zn)n∈Z. Consequently, this permutation
procedure is a particular spread-spectrum technique. Moreover, if
one regards the Ns samples per bit as chips, by comparison with the
CDMA terminology, this method can also be considered as a chip-
interleaving method. An example of this permutation procedure is
given in fig. 1, for one block of Nb = 4 bits and Ns = 8 samples.
Note that this chip interleaving can also be performed in addition to
a classical bit interleaving.

Denote b j =
[
b( j−1)Nb+1, . . . ,b jNb

]T
as the jth block of bits, and

m , [m1, . . . ,mNs ]
T as the result of the sampling of the waveform

pattern m(t) with Ns samples. Then, the jth block of sequence
(Zn)n∈Z, i.e. vector Z j = [Z( j−1)NsNb+1, . . . ,Z jNsNb ]

T , can be ex-
pressed as: Z j = MT b j , where M = mT ⊗INb (⊗ is the Kronecker
product, and In is the identity matrix of order n). Let P denote the
(NsNb)× (NsNb) permutation matrix. The jth block of sequence
(Un)n∈Z, defined by U j , [U( j−1)NsNb+1, . . . , U jNsNb ]

T , can be ex-
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Fig. 1. Example of permutations for one block, using biphase sig-
naling, Nb = 4, and Ns = 8.

pressed as: U j = PZ j = PMT b j. The continuous-time process
obtained from (Un)n∈Z using a rectangular waveform signaling is
then given by

∑
j∈Z

NsNb

∑
i=1

(PMT b j)iρ (t− (i−1)Ts− jNbT )

where (v)i denotes the ith component of any vector v, and ρ(t) is
the indicator function on [0;Ts]. Note that if an adaptive detection
based on a training sequence is used at the receiver, as it is proposed
in section 3, the receiver does not need to know the random permu-
tation, which can then change during the transmission, increasing
the time-diversity (in particular if a bit interleaver is used before the
permutation process).
2.2. The continuous received signal
Consider the asynchronous transmission of K users using the spread-
spectrum technique presented above. Let bk, j and Pk denote respec-
tively the jth block of bits and the permutation matrix associated to
user k. The channel of the kth user is a time-varying frequency-
selective channel, whose impulse response at time t is given by:

ck(t,τ) =
Lk−1

∑
l=0

ck,l(t)δ
(
τ− τk,l

)
.

where Lk is the number of paths, ck,l(t) is the time-varying gain of
the lth path of the kth user, τk,l is the propagation delay, and δ is the
Dirac function. The received signal is expressed as:

r(t) = ∑ j ∑
K
k=1 ∑

Lk−1
l=0 ∑

NsNb
i=1 ck,l(t)(PkM

T bk, j)i×
ρ
(
t− (i−1)Ts− jNbT − τk,l

)
+n(t)

where n(t) is an additive white Gaussian noise with variance σ2,
independent of the transmitted signals.

2.3. Discretizing of the continuous received signal
In this paper, it is assumed that the channel delays τk,l are un-
known to the receiver. It is only assumed that estimates τ̂k,min and
τ̂k,max of minl{τk,l} and maxl{τk,l}, respectively, are available for
all users. More generally, one can define τ̂k,min and τ̂k,max such
that the main amount of energy transmitted by user k for the jth bit
is (assumed to be) received between samples τ̂k,min + jNS + 1 and
τ̂k,max +( j + 1)NS. These estimates could be obtained for instance
from the position of the user in the cell. However, this problem is
still open and is beyond the scope of this paper. We propose to ob-
tain a discrete signal by a uniform sampling of the process r(t) based

on these estimates. More precisely, for a given sampling frequency
f0 (with f0 ≥ 2/Ts), define τ̂s

k,min and τ̂s
k,max as the entire parts of

τ̂k,min× f0 and τ̂k,max× f0, respectively, and Nsamp as the number of
samples during a bit period. Denote then

S j
k , {τ̂s

k,min + jNbNsamp +1, ..., τ̂s
k,max +( j +1)NbNsamp},

i.e., S j
k is the set of sample indexes which corresponds to the time

interval during which the jth block of the kth user is (assumed to
be) received. Thus, the sampled vector for the detection of this later
block is defined by:

r j
k , {r(n/ f0)|n ∈ S j

k}

The length of S j
k will be denoted by γk (it does not depend on j).

If the estimates τ̂k,min and τ̂k,max are accurate enough, then r j
k con-

tains almost all the samples corresponding to the bits transmitted
during this block (i.e., the bits in bk, j). Now, vector r j

k contains also
many interference terms: inter-symbol interference due to other bits
of other blocks of user k, and multiple-access interference due to the
bits of other users. This is particularly true for samples which do
not correspond to any bit of bk, j; but only a complete knowledge of
the channel delays would allow one to not take these samples into
account, which is not assumed here.

3. LMS DETECTOR

3.1. The RPMA case

The problem consists now of detecting the bit vector bk, j from the
data r j

k. This must be done by mitigating both the interferences and
the additive Gaussian noise. To this purpose, a classical strategy
consists of defining the estimated bit vector by

b̂k, j , sign(HT
k, jr

j
k) (1)

where Hk, j is the γk×Nb matrix which minimizes the mean-square

error (MSE) E
[
‖bk, j−HTr

j
k‖

2
]

with respect to matrix H (the ma-

trix norm is defined by ‖A‖ , (trace
(
AAT))1/2, and .T denotes

transposition). This detector acts as a combination of matched-
filters, a Rake receiver, and a multi-user detector, where these op-
erations are not separated. The optimal matrix Hk, j is given by:

Hk, j = Σ−1
k, j Rk, j (2)

Analytical expressions of Σk, j and Rk, j can be obtained as a func-
tion of the user’s and the channel’s characteristics. For clarity, the
expressions of Σk, j and Rk, j are reported in appendix 8.1. Now, it
is assumed that the channel coefficients and delays are unknown, so
that the quantities in (2) are not available to the receiver. Moreover,
they are also variable since the channels are time-varying. Thus,
one resorts to the LMS algorithm, which allows to adaptively con-
verge to the optimal solution, and to track its time variations. The
update equations (for learning and decision-directed sequences) of
this well-known algorithm are not recalled here and can be found for
instance in [7] 1.

1Note however that the LMS algorithm operates here on matrices, and
not on vectors, which is more usual. The up-date equations actually remain
unchanged.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



3.2. The DS-CDMA case
Consider now the DS-CDMA system. For such a system, the bits
bk( j) of the kth user are modulated by a signature waveform (code)
sk(t), which is assumed to be zero outside the interval [0,T ]. The
signal transmitted by user k is then

∑
j∈Z

bk( j)sk(t− jT ),

and the received signal can be expressed as:

r̃(t) = ∑
j

K

∑
k=1

Lk−1

∑
l=0

ck,l(t)bk( j)sk(t− ( j−1)T − τk,l)+n(t)

Define

S̃ j
k , {τ̂s

k,min + jNsamp +1, ..., τ̂s
k,max +( j +1)Nsamp}.

Denote γ̃k as the length of S̃ j
k. The vector used for the detection of

the jth bit of the kth user (i.e. bk( j)) is then defined by

r̃ j
k , {r̃(n/ f0)|n ∈ S̃ j

k}.

The optimal detection (in the sense, as previously, of the Linear Min-
imum MSE (LMMSE)) is given by

b̂k( j) , sign(H̃T
k, j r̃

j
k) with H̃k, j = Σ̃−1

k, j ρk, j (3)

where Σ̃k, j is the covariance matrix of r̃ j
k, and ρk, j = E[bk( j)r̃ j

k]
(these terms are given in appendix 8.2). An LMS algorithm can then
be performed, similarly as for the RPMA case, to converge to this
optimal solution and track its time-variations.

3.3. Complexity issue
As mentioned in the introduction, a similar problem has been ad-
dressed in [5], for RPMA and DS-CDMA systems, where the sam-
pling of the received signal was achieved using a bank of matched
filters. A filter was needed for each user, each path, each block of
bits, and each chip, resulting in high-dimension detection matrices.
Moreover, the knowledge of the all channel delays was necessary for
this matched-filtering. In the present paper, this knowledge is not re-
quired (see section 2.3). Moreover, thanks to the sampling strategy
used in this paper, the dimensions of the matrices involved in the de-
tection are dramatically reduced. For instance, in the simulation re-
sults presented section 5, the dimensions of matrices H1, j are 67×4
(γ1 = 67 and Nb = 4), i.e. 268 elements; using the matched filtering
proposed in [5], the dimensions of the matrices would be 384× 16,
i.e. 6144 elements. Moreover, with this latter method, these di-
mensions linearly increase with the number of paths, while with the
present method, the dimensions are independent of the number of
paths (furthermore, the knowledge of this number is not required
here).

4. THEORETICAL PERFORMANCE

4.1. LMMSE performance
In this section, the instantaneous performance of the LMMSE detec-
tor given by eq. (1) (2), and eq. (3), respectively, is given, i.e. we
derive the optimal performance for a particular block of bits (or, for a
particular bit in the case of the DS-CDMA). This performance must
be considered as a lower bound for the performance of the LMS al-
gorithm. For the RPMA system, the estimate of the mth bit of bk, j
can be written as

b̂k, j(m) = sign(θ m
k, j),

with:

θ
m
k, j , Hm

k, jr
j
k = Am

k, jbk, j(m)+Hm
k, jr

j,interf
k,m +Hm

k, jn
j
k

where Am
k, j , Rm

k, jΣ
−1
k, j R

m
k, j; Hm

k, j and Rm
k, j denote the mth row

and the mth column of Hk, j and Rk, j, respectively; r j,interf
k,m

is the unnoisy part of r j
k,m which does not contain bk, j(m);

and n j
k is the noise term. Now, r j,interf

k,m is the sum of many
independent random variables, and can then be approximated
by a Gaussian variable, according to the central limit theo-
rem. Denote σ2

interf as the variance of this variable. We have:
σ2

interf = E[((Hm
k, j)

T r j,interf
k,m )2] = (Hm

k, j)
T cov(r j,interf

k,m )(Hm
k, j) where

cov(r j,interf
k,m ) = cov(r j

k,m)− (Rm
k, j)(R

m
k, j)

T−σ2Iγk , and cov(r j
k,m) is

the mth diagonal block of Σk, j. Thus, the bit error rate (BER) for
bk, j(m) is given by:

BERk, j(m) = Q
(

Am
j,k

/√
σ2

interf +σ2
n

)

where Q(x) ,
∫+∞

x
1√
2π

e−u2/2du, and σ2
n , σ2‖Hm

k, j‖
2 is the vari-

ance of the noise term. A very similar expression of the BER can be
obtained for the DS-CDMA system.

4.2. LMS performance

The LMMSE performance results constitute a lower bound for the
LMS performance. Now, the LMS coefficients are never equal to the
LMMSE coefficients, but rather randomly oscillate around these lat-
ter. It is then interesting to take this random behavior into account in
order to derive more accurate performance of the LMS estimation.
Denote K j

k,m as the covariance matrix of the error between the LMS
coefficient vector for the mth bit of the jth iteration of the algorithm,
and the optimal LMMSE coefficient vector, It is known that K j+1

k,m

is linked to K j
k,m by a recursive equation (see [7] p.395). To the

best of our knowledge, there is no expression for the limit of K j
k,m.

However, for fixed channels, this limit can be numerically computed
by iterating the recursive equation mentioned above. For all com-
putations performed in that way, it always appeared that the limit
covariance matrix, denoted by K∞

k,m, is a diagonal matrix of the form

K∞
k,m = σ

m,2
LMS,kIγk . Note that for time-varying channels, such a com-

putation should be achieved at each iteration j of the LMS algorithm,
yielding to a covariance matrix of the form σ

m,2
LMS,k, jIγk . The form of

the limit covariance matrix shows that the errors obtained on differ-
ent coefficients are uncorrelated. Moreover, it also appeared from the
simulations of the LMS algorithm that the coefficients are approxi-
mately normally distributed. One can then conclude that the errors
corresponding to different coefficients are statistically independent.
Define the matrix Σ

m
k, j , Σk, j−Rm

k, j(R
m
k, j)

T. Then it can be shown
that the BER for the kth user and the mth bit of the jth block can be
approximated by (still using the Central Limit theorem)

BERlms
k, j (m) = Q

(
Am

k, j

/√
σ

m,2
k, j

)

with σ
m,2
k, j , (Hm

k, j)
TΣ

m
k, jR

m
k, j + σ

m,2
LMS,k, j(‖R

m
k, j‖

2 + traceΣ
m
k, j) (for

brevity reasons, details of this computation cannot be given here). A
similar result can be obtained for the DS-CDMA system.
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5. SIMULATION RESULTS

This section presents some simulation results. For these simulations,
the characteristics of the users (i.e., parameters K, Nb, Ns, and the
permutations) are defined, which determines matrices Pk. The mul-
tipath time-varying channels are generated from the Jake’s model.
More precisely, The channel coefficients have been drawn indepen-
dently according a Rayleigh distribution with parameter 0.5.We first
considered static channels. Indeed, in that case, it is possible to con-
firm the theoretical BERs by the estimated BERs computed during
one simulation. For time-varying channels, the BERs are also time-
varying, and many simulations would be necessary at each instant to
estimate the instantaneous BER, which is not computationally fea-
sible. For the simulations with static channels, the parameters are
as follows: Tb = 4.88 10−7s, K = 4, Nb = 4, Ns = 8, Lk = 3 for all
k. For DS-CDMA, one uses Gold codes with 7 chips per bit (thus,
with an equivalent spectrum spreading factor). The channel delays
are drawn uniformly in the set [0,8Tb], and the estimates τ̂k,min and
τ̂k,max are uniformly drawn in a window of length Tb centered on
τk,min and τk,max, respectively. The results presented in this section
are those obtained for user 1 (similar results have been obtained for
the other users). Fig. 2 presents the simulated and theoretical BERs
for both the RPMA and the DS-CDMA systems. The BER is given
as a function of the signal-to-noise ratio (SNR), defined as the ratio
between the power of the un-noisy multi-user received signal and
the power of the additive Gaussian noise, and not as a function of
the Eb/N0 ratio, which is more standard in communications systems.
Indeed, the SNR takes into account the coefficients of all channels.
At the contrary, the Eb/N0 ratio only concerns the user of interest:
thus, for a same Eb/N0 ratio, the performance results can be poor
or good, depending on the strength of the interferer signals. Hence,
the SNR is a better measure of the importance of the noise with re-
spect to the information-bearing signal at the receiver. It would also
be interesting to some results obtained as a function of the Eb-over-
interference ratio, or the Eb-over-interference-plus-noise ratio, as it
is more usual in the communication community. This would help
to make a quantitative assessment of the resistance of the scheme to
multi-user interference. However, for brevity reasons, this analysis
cannot be conducted here. For static channels, the variance of the
noise can then be obtained from the SNR and the expression of the
power of the unnoisy received signal given in [6]. Clearly, the the-
oretical LMS results are confirmed by the simulation results. More-
over, these results are very close to the LMMSE results (for DS-
CDMA, they are quasi indistinguishable). One can also note that the
RPMA and DS-CDMA performance are quite similar (the RPMA
BER is just a bit lower than the DS-CDMA BER). Indeed, for static
channels, one cannot benefit from the chip interleaving proposed in
RPMA. Time-varying channels are next considered. The parameters
of the simulations are the same as previously. In addition, the speeds
of the users are between 20 and 30 km/h, and the carrier frequen-
cies (which are required for the computation of the Doppler spreads
used in the Jake’s channel model) are around 830MHz. Figures 3
an 4 illustrate the behavior of the LMS algorithm for the first user,
by plotting the time variations of the computed LMS coefficients,
along with the variations of the optimal LMMSE coefficients, in the
RPMA and DS-CDMA cases, respectively (for clarity, only 5 coeffi-
cients are considered in the figures). It can be observed that the LMS
algorithm globally succeeds in tracking these variations, as long as
these ones are not too fast (which occurs for instance around in-
stant 0.07s). Figure 5 shows the time variations of the theoretical
LMMSE and LMS BERs for the first user. For RPMA, each curve
corresponds to the mean curve obtained for the 4 bits of the block.
One can observe that the LMS performance follow the LMMSE per-
formance, except around instant 3.5e-5s, where the LMMSE BERs
are much better. Moreover, one can see that the theoretical LMS re-
sults are better for RPMA than for DS-CDMA. This observation is
confirmed in table 1, which gives the estimated LMS BER computed

Fig. 2. Simulated and theoretical BERs for static channels.

during the whole simulation for both systems and different SNRs.
One can note that the RPMA performance are much better, which is
mainly due to the chip-interleaving. For instance, for SNR= 14dB
and SNR= 16dB (which corresponds to cases where the channels
and the choice of the transmission system have an important impact
on the performance), the BER is 14 and 27 times smaller for RPMA
than for DS-CDMA, respectively.

SNR=8dB SNR=10dB SNR=12dB
RPMA 0.008280 0.002150 0.000470

DS-CDMA 0.018135 0.008380 0.002985
SNR=14dB SNR=16dB

RPMA 0.000055 0.000005
DS-CDMA 0.000790 0.000135

Table 1: mean estimated BERs for RPMA and DS-CDMA systems.

6. CONCLUSION

In this paper, a multiple-access system based on random permu-
tations is studied for an asynchronous transmission on frequency-
selective time-varying channels. This study assumes that the chan-
nel coefficients and delays are unknown by the receiver. Instead,
only rough estimates of the minimum and maximum delays are re-
quired for each user. In that context, the bit detection is achieved
using an LMS algorithm, which is able to track the variations of the
theoretical optimal coefficients. Theoretical performance results are
provided, both for the LMMSE and the LMS detectors. A compari-
son with the DS-CDMA system is presented for an equivalent trans-
mission context. This comparison, achieved both theoretically and
practically, shows that the RPMA performs (in general) better than
the DS-CDMA. This is mainly due to the fact that the bit energy is
spread in time, and that the chips are interleaved, which gives more
robustness regarding the variations of the fading channels. One of
the important remaining issue is the estimation of the minimum and
maximum delays, and the analysis of the performance regarding the
quality of these estimates. This issue is however beyond the scope
of this article, and is currently under study. Moreover, it would be
also interesting to incorporate the coding and the decoding in the
modulation/demodulation schemes.
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8. APPENDIX

8.1. Matrices Rk, j and Σk, j

Denote Rm
k, j as the mth column of the γk×Nb matrix Rk, j.We have:

Rm
k, j = E

[
bk, j(m)r j

k,m

]
. It can be shown that the pth element of

Fig. 5. Time variations of the theoretical BERs for time-varying
channels.

Rm
k, j is expressed as:

∑
( j,l,i)∈Ωk

p

ck,l(ip/ f0)(PkMT)i,m

where Ωk
p , {(l, i) ∈ {0, . . . ,L− 1}× {1, . . . ,NsNb} such that 0 ≤

p/ f0− τk,l − ( j− 1)NbT − (i− 1)Ts ≤ Ts}, and ip , S j
k(p). Using

the same notations for (p1, p2) ∈ {1, . . . ,γk}2, it can be shown that
the covariance matrix Σk, j is given by

Σk, j(p1, p2) = ∑
K
k′=1 ∑

L−1
l1,l2=0 ck′,l1(ip1/ f0)ck′,l2(ip2/ f0)

∑
NsNb
i1,i2=1(Pk′MT)i1,:(Pk′MT)T

i2,:C
ip2 ,l2,i2
ip1 ,l1,i1

(k′)+σ2 (4)

where (Pk′MT)i,: denotes the ith row of Pk′MT, and C
ip2 ,l2,i2
ip1 ,l1,i1

(k′) is

the cardinal of the set { j|( j, l1, i1) ∈ Ωk′
ip1

,( j, l2, i2) ∈ Ωk′
ip2
}. Note

that since sets Ωk
p depend on the delays, Σk, j(p1, p2) also depends

on the delays, although these latter do not appear explicitly in (4).

8.2. Vector R̃k, j and Matrix Σ̃k, j

By definition, R̃k, j = E[bk( j)r̃ j
k]. It is not difficult to prove that R̃k, j

is the vector whose p-th component is given by (p ∈ {1, . . . , L̃k}):

R̃k, j(p) = ∑
l∈Θk, j,p

ck,l (̃ip/ f0)sk (̃ip/ f0− τk,l − jT )

where: ĩp , S̃ j
k(p) and Θk, j,p , {l ∈ {0, . . . ,L− 1}|(ip/ f0− τk,l −

jT ) ∈ [0;T ]}.
Moreover, Σ̃k, j is the covariance matrix of r̃ j

k. It can be shown that,
for (p1, p2) ∈ {1, . . . , γ̃k}2:

Σ̃k, j(p1, p2) =
K

∑
k′=1

∑
i∈Ω̃k′

p1
∩Ω̃k′

p2

∑
l∈T p1 ,p2

k′ ,i

ck′,l (̃ip1/ f0)

ck′,l (̃ip2/ f0)sk′ (̃ip1/ f0− τk′,l − iT )sk′ (̃ip2/ f0− τk′,l − iT )

+σ
2
δ p1,p2

where: ĩp1 , S̃ j
k(p1), ĩp2 , S̃ j

k(p2), T p1,p2
k′,i , Θk′,i,p1 ∩Θk′,i,p2 and δ

is the Kronecker function, i.e. δ m,m = 1, δ m,n = 0 for m 6= n.
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