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ABSTRACT

The aim of the present research is to explore the applica-
tion of sparse coding principles to the processing within a
cochlear implant. These principles would determine what
information in noisy speech should be extracted and used to
excite the electrode array within the cochlea. The hypothe-
sis is that reducing redundancy in the signal, making it more
sparse, would improve speech recognition scores in noise.

The proposed sparse coding strategy was based on a
combination of ICA (independent component analysis) and
PCA (principal component analysis), both operating on the
spectrotemporal envelope of the speech signal. The algo-
rithm is tested for speech in quiet and modulated babble
noise conditions (signal-to-noise ratios, SNR=15 dB, 10 dB,
5 dB). Results show that the algorithm is beneficial, partic-
ularly when baseline performance of listeners is poor. This
approach is applicable both to acoustical hearing aids and
cochlear implants.

1. INTRODUCTION

A cochlear implant (CI) is an electrical device that helps to
restore partial hearing to the profoundly deaf. The main prin-
ciple of cochlear implants is to use electrodes, inserted in the
inner ear, stimulating the auditory nerves. Electrodes at dif-
ferent places correspond to different frequencies. Cochlear
implants transfer acoustical information to the auditory per-
ceptual system via electrical pulses representing modulation
of the speech spectrum. Although the speech information
sent through cochlear implants is quite crude, the perfor-
mance of CI users has seen increases with the new speech
processors and algorithms. A majority of implant users have
benefited from this device. Many of them can converse us-
ing the telephone without difficulty. Some top CI users even
get similar performance in quiet to normal hearing subjects
using clinical speech recognition tests [1].

However, the average performance of most cochlear im-
plant users still falls below normal hearing, especially some
CI users perform much worse in a noisy environment. How
to help the lower performance users is still a key research
question in CI research. Normal hearing people can under-
stand speech very well in a moderately noisy environment,
but this is a very challenging situation for cochlear implant
users to deal with. Normal hearing subjects are able to ob-
tain masking release by exploring the characteristics of noise,
such as single same talker or single different talker. CI users
are unable to take advantage of these masking characteristics
and no masking release has been observed when a different
masking voice was used [2]. Most CI users, compared with
normal hearing subjects, are not able to fully use the spectral
information provided by their implant in noisy situations [3].

One idea to improve the speech recognition for the lower
end performance users in noise is to minimise redundant
stimuli, from which CI users will be unable to get any ben-
efit. The lower performance users can be considered as hav-
ing more severely limited resources to encode the electrical
stimuli provided by CI. In noisy situations, the non-useable
stimuli would compete for the encoding resources with the
useful information for speech understanding. These stim-
uli in noisy condition could even harm the speech percep-
tion performance of CI users. CI users already have a very
limited dynamic range [4] to encode the electrical stimuli.
Giving stimuli that can not be used by the auditory system
of CI users can be thought as a waste of encoding resources
in general. There is clearly a bottleneck between electrical
stimuli and acoustical information. This bottleneck is proba-
bly worse for CI users whose performance is poor.

In order to achieve higher speech recognition perfor-
mance, a cochlear implant has to transfer most essential in-
formation into the limited dynamic range of impaired audi-
tory neurons. The limited dynamic range problem is essen-
tially an information transmission problem. The CI processor
has to find a way to optimally transfer most relevant speech
information to CI users. Looking for the most essential infor-
mation for CI speech processing has been the key to research
from the start of CI and has important implication for speech
perception research. The other way to look at this problem
is to consider information theory and quantify the problem
with the corresponding mathematical tools.

Most recently sparse coding [5] based on information
theory has been applied to the auditory filter modelling pro-
cess and achieved great success [6]. Sparse coding theory
states that only a few neurons fire at the same time, and
the redundancy of data can be explored through higher order
statistics [7, 8]. Cochlear implants cause neuron firing pat-
terns through electrical stimuli. The firing patterns are very
well synchronized with the electrical stimuli [9]. To imple-
ment sparse coding principles for electrically stimulated au-
ditory neuron firing requires sparse stimuli: a sparse speech
spectrum.

2. SPARSE ALGORITHM

In order to produce a sparse spectrum based on information
theory, a combination of PCA and ICA is used. Fig: 1 shows
the structure and key concept of the SPARSE algorithm.

Speech is first fed into a conventional Advanced Combi-
nation Encoder (ACE) speech processing strategy shown in
the right panel to get a spectrum envelope. The envelopes in
different frequency channels are estimated from each spectral
band of the audio signal. ACE strategy then select N chan-
nels out of M frequency band to stimulate auditory neurons
of CI users.
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Figure 1: Acoustical signal first is processed by filter banks
and then envelopes are extracted. The conventional ACE al-
gorithm will select a few channels out of 20 to 22 channels
and stimulate the auditory neurons non-simultaneously. The
SPARSE algorithm uses PCA and ICA analysis on the enve-
lope signals, reducing the redundancy and making the spec-
trum envelope representation sparse.

For the new SPARSE algorithm, the envelope signals
across different frequency bands from ACE are then fed into
PCA to reduce dimensions and some noise. The dimension
reduction is especially important for an encoding system that
has limited dynamic range [7]. The output of PCA after
whitening (X) can be sent to ICA and transformed to the in-
dependent space by transformation W , where channels are in-
dependent based on Equ. 1. Thresholding can be performed
on the independent channels. The thresholding fucntion in
Equ. 2 is based on the assumption that the independent com-
ponents S are non-gaussian and noise is more gaussian [10].

S = W ∗X (1)

Where W is the ICA transformation matrix and X is the
output after PCA. 12 out of 22 eigenvectors of the envelope
signals are selected.

S Essential =
sign(S.∗max(0, |S|−A.∗σ2)

(1+σ2 ∗B)
(2)

Where S Essential represents the essential components
in the independent space S. S represents the independent
components and σ is the standard deviation of the Gaussian
noise. Here it can be replaced by the standard deviation of the
independent components in order to reduce the independent
components with smaller amplitude, assuming that the small
absolute values are purely noise. A and B are constants: for
modulated noise in the experiment, A=3, B=8. The selection
of A and B is based on the trials of subjective listening to the

Figure 2: The simulation of /ata/ from ACE output with
SNR=10 dB. The middle panel shows the output of SPARSE.
The lower part is the difference between ACE and SPARSE.
The difference can be seen as redundant components hidden
in the ACE output, as the SPARSE output can represent the
/ata/ sound. It can be seen that the SPARSE output is more
clean and sparse.

vocoder of sparse envelope signals [12]. A and B could also
be optimized for each individual users.

Many sparse denoising shrinkage algorithms derive W
based on a clean set of data [10, 13]. Here W is derived based
on the noisy data directly. The SPARSE algorithm applies
ICA on noisy data for two reasons. One is that clean speech
will not be available in the real time application; the other
is that PCA can help to reduce part of noise through dimen-
sion reduction. The SPARSE algorithm is designed not only
to reduce noise but also to reduce some speech components
that are redundant. Inverse transformation can be performed
on the selected independent components after thresholding.

X̂ = W−1 ∗S Essential (3)

X̂ then contains the essential parts of the spectrum enve-
lope and is a sparse version of X, the speech spectrum output
of ACE. X̂ is used to generate the electrical pulses sequence
for CI stimuli to produce a sparse pattern of auditory neuron
firing.

Fig. 2 shows an example of the output of ACE and
SPARSE algorithms with SNR = 10 dB. The SPARSE out-
put is much more clean. The difference between ACE and
SPARSE can be seen as the redundant parts hidden in the
ACE output. The SPARSE output can be heard more clearly
and sounds more crisp than the ACE output in the simulation.

3. SPARSE EVALUATION

One important factor considered in the proposed algorithm is
the sparseness of the reconstructed signal. An important ob-
jective is to transform the CI stimuli to more sparse stimuli,
which could potentially make the neurons fire sparsely and
implement the sparse coding theory for CI. Sparseness can
be quantified by kurtosis of the signal [7].
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Figure 3: The increased sparseness with SPARSE output.
ACE and SPARSE algorithm outputs can be simulated as
acoustical signals using a vocoder, combining envelopes
from different frequency bands after being modulated by their
corresponding narrow band frequency noises. The sparse-
ness of these simulated waveforms can thus be measured by
kurtosis. The output with the SPARSE algorithm is much
more sparse than the ACE output. The objective of making
the spectrum sparse is achieved, even for the clean speech
(SNR=Inf).

K =
1
n

n

∑
i=1

(xi−µ)4

σ4 −3 (4)

where x is the amplitude of the signal, µ is the mean and
σ is the standard deviation. For a normalized Gaussian (non-
sparse) distribution with µ = 0 and σ = 1, the kurtosis is
(by definition) K = 0, for other signals the kurtosis may be
super-Gaussian (K > 0) or sub-Gaussian (K < 0).

3.1 Speech materials
Speech tokens were drawn from 9 VCV (Vowel Consonant
Vowel) words: (/aba/, /ada/, /aga/, /aka/, /ala/, /ama/, /ana/,
/apa/, /ata/). Modulated noise was used in four noisy condi-
tions (Quiet, SNR=15, 10, 5 dB). The modulated noise was
also used in [11]. The number of talkers for modulated noise
was eight.

The evaluation of sparseness takes the simulated output
waveforms as a whole and calculates the kurtosis of the en-
tire time series based on Equ. 4. If the kurtosis increases then
the sparseness of the stimuli is increased. Fig. 3 shows that
the kurtosis of the output of the SPARSE algorithm is much
higher than the sparseness of the output of ACE algorithms.
The kurtosis of the enhanced signal after the SPARSE algo-
rithm is higher than that of the output of ACE. The enhanced
signal is therefore more sparse than the output of the ACE
algorithm.

4. LISTENING EXPERIMENTS

The increased kurtosis of the enhanced signals shows that
the SPARSE algorithm can make the stimuli sparse. In or-
der to test the intelligibility of the sparse speech, both for
CI users and normal hearing listeners, listening experiments

Normal hearing subjects

Figure 4: Normal hearing subject recognition scores in mod-
ulated babble noise with ACE and SPARSE in four signal
noise ratio conditions. ’ACE Inf’ represents the condition of
quiet with ACE algorithms; ’sparse 15’ represents the 15 dB
SNR condition with SPARSE.

were performed to test the algorithm. Both normal hearing (7
subjects) and CI users (10 subjects) participated in the listen-
ing experiments. The normal hearing subjects listen through
TDH-39 earphones. The stimuli of CI users were saved in the
computer and presented through Nucleus Implant Commu-
nicator software connected to their cochlear implant device
(NIC streaming).

4.1 Experiment I: Normal hearing subjects and sparse
stimuli

Normal hearing subjects can listen through vocoder simula-
tion of the output of CI processing. The vocoder was pro-
duced based on the envelope signals of the ACE and the
SPARSE strategy. The speech materials used are the same as
the speech materials used in the kurtosis evaluation: 9 VCV
words, babble modulated noise, four different noise condi-
tions (Quiet, SNR=15, 10, 5 dB). Each item was presented
four times to each subject and only the last three times were
counted in the average score. All stimuli presented to the
normal hearing listeners were set to equal loudness.

Fig. 4 shows the individual results for speech recognition
scores in the modulated babble noise. Most subjects show
improvement when the SNR is lower, especially at +5 dB
SNR. The difference between SPARSE and ACE is statisti-
cally significant (P = 0.021) for SNR = 5 dB in the babble
noise condition. The difference between SPARSE and ACE
is not statistically significant for other conditions. There is
possibly a ceiling effect for normal hearing subjects. Fig. 5
plots the differences between the scores of subjects with ACE
and with SPARSE. It can be seen that the speech recogni-
tion score improves when baseline performance of subjects
is poor, say when the speech recognition score is below 70%.

The results in normal hearing subject show that the
SPARSE algorithm helps when SNR is low and speech
recognition performance is lower with ACE. Fig. 5 shows
that when the speech recognition score is below 70% in noise
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Figure 5: Normal hearing subject recognition score in mod-
ulated noise with ACE and SPARSE in four SNR conditions.
X-axis is the speech recognition score with ACE. Y-axis is
the score difference between ACE and SPARSE in modulated
babble noise. The improvement is smaller in the area of good
performance. The dotted line represent a score difference of
zero. For symbols under the dotted line, the recognition score
decreases with SPARSE.

conditions, the SPARSE algorithm can help improve perfor-
mance. While for the listeners who have already have high
performance, the SPARSE algorithm could make the perfor-
mance worse.

One possible reason is that when the speech recognition
score is high, the listeners are able to resolve most informa-
tion presented and reach ceiling performance. Reducing re-
dundant information may reduce speech recognition score.
While for people who could not resolve the information in
noisy conditions, the SPARSE algorithm can help to improve
their performance by reducing the noise and redundant infor-
mation.

Another possibility is simply the statistical artefact of re-
gression to the mean, where a listener who scores low by
chance on one test will tend by chance to show better perfor-
mance on the other.

4.2 Experiment II: CI users and sparse stimuli

The same speech materials were used as for normal hearing
subjects: nine VCV (Vowel Consonant Vowel) words: (/aba/,
/ada/,/aga/,/aka/,/ala/, /ama/, /ana/, /apa/, /ata/) and modu-
lated noise. Four noise conditions (Quiet, SNR=15, 10, 5
dB), four repeats per item are presented and only the last
three times counted in the average score. The stimuli were
presented to the subjects through the NIC stream software,
which can deliver the electrical pulse sequence to the CI. The
sequences were produced based on CI settings that subjects
used daily. The sequences were saved in the computer before
presentation.

Fig. 6 shows the individual results of speech recognition
scores in the modulated babble noise. The variance among
subjects in speech recognition performance is quite large.
For example, subjects S4 and S6, have great improvement

on speech recognition score using the SPARSE algorithm
across different SNR; while for listeners whose performance
is relatively high in quiet, the improvement is less or no im-
provement (S9 or S10 for example). This is consistent with
the normal hearing listeners, but the improvement for CI is
larger than for normal hearing listeners. This suggests that
sparse stimuli are more important for CI users.

Fig. 7 plots the difference between the scores of subjects
with ACE and SPARSE in modulated babble noise. The main
improvement is again shown in the left upper corner as the al-
gorithm helps listeners whose performance with ACE is poor.
The general conclusion is that the SPARSE algorithm helps
those whose baseline performance is low. This is interest-
ing as the improvement for users with lower performance is
a challenging task for CI research.

The SPARSE algorithm could help these subjects to
achieve relatively higher speech recognition scores, which
are comparable with the high end performance CI users. As
shown in Fig. 6, subject S7 has a very low speech recognition
performance with ACE at 5 dB SNR (19%), compared to the
score of S6 in the same condition (44%). With SPARSE, the
performance of S7 at 5 dB SNR can be as high as S7: 48%.
S5, S7 and S8 had missing data points at 5 or 10 dB as the
subjects reported tiredness and less data were collected. Pos-
sible reasons for the improvement of CI users could be: (1)
the new strategy reduces interaction between channels; (2)
it selects only the essential information in speech for sim-
ulating auditory neurons; (3) as only the most essential in-
formation is selected, the limited dynamic range of cochlear
implant users can be used efficiently; (4) it might force neu-
rons to fire more sparsely, and hence more physiologically,
compared to neurons stimulated by the present commercial
algorithms. Incidentally, SPARSE will reduce energy con-
sumption and therefore prolong battery life.

Limitations on improvement were undoubtedly caused
by lack of familiarity of users with the novel processing. CI
users typically require days or weeks of familiarity to bene-
fit from speech processor improvement. Although the results
here were based on an off line SPARSE strategy, a real time
SPARSE strategy is still being investigated. There are al-
ready some online algorithms which combine PCA and ICA
for blind source separation [14]. Also high order statistics
was also shown have been helpful to extract speech features
even in a very short time window (several milliseconds) [15].
Further online implementation of the SPARSE algorithm is
to be investigated.

5. SUMMARY AND CONCLUSIONS

A new algorithm named SPARSE has been developed based
on current CI speech processing and the principle of sparse
coding.

SPARSE appears to improve speech recognition in noise
compared to conventional processing. Improvements are ev-
ident in noisy conditions and for listeners with poor base-
line performance, where need is greatest. Greater familiar-
ities with SPARSE should reveal greater improvements for
cochlear implant users. Further evaluation is desirable.
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Figure 6: CI user speech recognition scores in modulated
noise. The ’ACE Inf’ represents the condition of quiet with
ACE. ’SPARSE 15’ represents the 15 dB SNR condition with
SPARSE.

Figure 7: CI user speech recognition scores in modulated
noise with ACE and SPARSE in four SNR conditions. X-axis
is the speech recognition score with ACE. Y-axis is the score
difference between ACE and SPARSE in modulated noise.
The dotted line represents the score difference of zero. For
the differences under the dotted line, the recognition score
decreases with SPARSE.

NIC Matlab code and devices, plus partial support for a stu-
dentship.
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