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ABSTRACT 

We describe a speech enhancement system which combines 
a variable, input adaptive noise suppression rule with a re-
cently developed spectral analysis framework in Hilbert 
domain. The variable suppression rule is an extension to a 
formula which encompasses well known noise reduction 
algorithms such as power subtraction and Wiener filtering. 
Time-varying parameters which are based on the input sig-
nal to noise ratio and its spectral shape are embedded in 
this formula. The framework consists of using Hilbert trans-
form in sub-bands in conjunction with wavelet packet de-
composition. This spectral analysis accounts for perceptual 
features and it was shown to be more effective than the 
common Fourier transform. The experiments show speech 
quality improvement in terms of perceptual measures. 

1. INTRODUCTION 

The noise reduction from human speech signal is an ongoing 
research subject with increasing applications. Generally, 
noise reduction algorithms consist of a spectral analysis sec-
tion followed by a noise spectrum estimation procedure; and 
finally, an enhancement filter is applied to the noisy signal. 
Traditionally, spectral analysis is preformed by segmenta-
tion of the input signal and calculation of the short time Fou-
rier transform. Noise is removed by modifying the fre-
quency bins of every segment to achieve short time spectral 
noise attenuation. We focus on subtractive-type family of 
algorithms which attempt to enhance the short time spec-
trum of speech by subtracting a noise estimate from the in-
put noisy signal. Due to low complexity and simplicity of 
implementation, this family of algorithms is widely used in 
speech enhancement systems. The major drawback of these 
types of algorithms is the residual noise, referred to as musi-
cal noise, introduced due to error in noise estimation. Be-
sides, high degree of noise suppression, on the basis of this 
estimation, will bring about distortion of speech compo-
nents. Thus, there is a trade-off between the amount of dis-
tortion and residual noise. Current research is focused on 
higher degree of suppression in low SNR (Signal to Noise 
Ratio) regions and lower suppression when a high SNR 
value is observed. According to this idea many variations 
have been proposed to subtractive algorithms, some embed-
ding an adaptive parameter in the formula of these algo-
rithms. We utilize a general formula devised in [1] which 
can take the form of a wide range of subtractive algorithms 

by changing a couple of parameters. This gives much flexi-
bility and the opportunity of fast adaptation of the filter sup-
pression rule based on the noisy signal.  
Furthermore, we intend to use this adaptive suppression rule 
in Hilbert domain. Instead of using DFT filter banks, we use 
Perceptual Wavelet Packet Transform (PWPT) as intro-
duced in [2] and [3] which was shown to be more in correla-
tion with critical bands of human ear.  Next, we utilize 
squared analytic signal envelope as a representation of sub-
band power. This is based on the experiments reported in [4] 
and [5] which show that the analytic signal is more reliable 
than Fourier transform to reveal local variations in non-
stationary signals. In fact, the psychoacoustic model pre-
sented in [6], states that a process similar to the analytic 
decomposition of a sound wave is performed in the basilar 
membrane.  
The outline of this paper is as follows. In section 2 the spec-
tral analysis including perceptual wavelet packet transform 
and analytic decomposition is explained in detail. Subse-
quently, we describe the proposed noise reduction technique 
in section 3. Experimental results are presented in section 4 
and finally, we conclude the paper in section 5. 

2. SPECTRAL ANALYSIS 

2.1 Perceptual Wavelet Packet Transform 
Instead of Fourier transform we employ discrete wavelet 
transform as a tool for spectral analysis in our implementa-
tion. Wavelet transform is suitable for the study of non-
stationary processes since it lacks the limitation of fixed size 
transform window existing in short time Fourier transform. 
The regular dyadic wavelet decomposition results in loga-
rithmic bandwidths of wavelet sub-bands. On the other 
hand, it has been shown that human ear acts similar to a fil-
ter bank with a particular structure. The frequency response 
of human ear is identical inside certain bands and different 
in others in terms of bandwidth. This structure is referred to 
as critical bands. 
To obtain the critical band structure we must use the gener-
alized form of wavelet transform called wavelet packet 
transform. 25 critical bands are determined for human ear in 
the range of 20Hz to 20 KHz. As we assume the input signal 
to be wideband speech (0-8KHz) no more than the first 19 
critical bands are used in our work. We utilize a particular 
decomposition tree as depicted in Fig. 1. The frequency 
ranges for resulting sub-bands are illustrated in table 1. In 
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contrast to common methods, we may express a sub-band by 
joining a combination of outputs in different levels. In such 
cases, to obtain a single signal as a sub-band we reconstruct 
these different decomposition parts until they unite with the 
same sampling rates. For example, the low frequency com-
ponent of sub-band 19 is up-sampled and filtered prior to 
being added to the higher frequency component.  

 

 
Figure 1 - Wavelet Packet Analysis Tree Corresponding to Used 

Critical Subbands  

 

Table 1- Critical subbands  

Band number critical band range (Hz) 
1 0-125 
2 125-250 
3 250-375 
4 375-500 
5 500-625 
6 625-750 
7 750-875 
8 875-1000 
9 1000-1250 
10 1250-1500 
11 1500-1750 
12 1750-2000 
13 2000-2250 
14 2250-2750 
15 2750-3125 
16 3125-3750 
17 3750-5000 
18 5000-6500 
19 6500-8000 

 
Since the high and low band wavelet decomposition filters 
have some overlap, the approximation and detail signals 
bear some aliasing. The particular wavelet reconstruction 
pair of filters can be designed to cancel this effect when we 
synthesize the sub-bands using them. In our speech en-
hancement system the decomposed signals undergo some 
changes through the noise reduction formula. Thus the re-
constructed signal will have some aliasing effect. To over-
come this problem we must use filters with high selectivity 
and order to reduce their overlap. Besides, increasing the 
order of the filter is at the cost of higher computational load. 
Thus, there is a trade off between the filter order and the 
computational load. We have chosen sav wavelet filters 
primarily as introduced in [7] due to their sharpness of cut 
off. The explicit formula for the wavelet kernel is defined in 
(1). This formula is derived from the raised cosine function 

in frequency domain. Where f = 0 … k is the normalized 
frequency and k = N/2. 
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N defines the frequency resolution and equals the filter or-
der. To realize a half-band filter, r must equal 0.5. Using 
IFFT the filter coefficients are obtained and normalized. The 
wavelet kernel corresponding to this filter is called ‘savK’ 
where K equals N/2. 
We use sav16 as the suitable wavelet kernel with β parame-
ter chosen to be 0.25 for sub-band decomposition. We also 
use these filters in analytic decomposition [7] as described 
in the next section. The sav filter has the advantage of being 
linear phase. In addition, it is easy to customize sav for use 
as a Hilbert transformer by changing the β parameter. 
2.2 Analytic Decomposition 
The analytic counterpart of a signal s(t) is defined to be: 

)(ˆ)()( tsjtstsa +=                         (2) 

Where ( )tŝ  is the Hilbert transform of the signal. The ana-

lytic signal can be decomposed into instantaneous envelope 
and phase described by the following equations: 

)()()( tj
a etats φ=                            (3) 

Where 
|)(|)( tsta a=    )()( tst a∠=φ                 (4) 

The envelope of the analytic signal is of interest since it 
gives local information about the signal behavior, suitable 
for analysis of non-stationary processes. Among all methods 
of analytic decomposition, using a half-band filter is most 
suitable for our purpose. As described in [8], by filtering the 
input signal with a half-band low pass filter which is shifted 
to the right by π/2 the analytic counterpart of the real signal 
is obtained. This is illustrated in Fig 2. 
 We choose the low-pass half-band filter for analytic de-
composition to be a sav filter. Note that the low-pass filter 
must equal 0.5 in the normalized frequency of 0.5, thus we 
must use π/3 instead of π/4 in (1). Furthermore, more accu-
racy and sharpness is needed and the β parameter must de-
crease. The value we use here is β = 0.01 with filter order 
being the same as wavelet kernel, 32. The coefficients of the 
filter are modulated by exp(-jnπfs/4) to yield a π/2 shift in 
Fourier domain. The analytic signal is computed directly 
through convolving input signal with this complex filter. 
 

 

    Figure 2 - A Sample Halfband Lowpass Filter Modulated by 
exp(-jnπfs/4)  
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3. ADAPTIVE SPEECH ENHANCEMENT SCHEME 

3.1. General Noise Suppression Rule 
Subtractive type speech enhancement techniques assume 
that the noise is additive and uncorrelated with speech. 
Thus, the noisy speech can be represented by 

 )()()( ndnsnx +=                           (5) 
The enhanced signal is computed in a frame-by-frame basis. 
As it is known that the human ear is not much sensitive to 
phase changes, the phase of the enhanced signal is left un-
changed. For the particular case of power subtraction the 
suppression rule is formulated as (6). 
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Where ( ) 2ˆ ωD represents the noise power spectrum esti-

mate. The method actually involves linear filtering in fre-
quency domain. The frequency response of the filter is de-
fined in every frame as follows: 
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A consideration in filter design is to choose an optimal filter 
characteristic. The concept of Wiener filter is the result of 
such consideration. The optimality of this filter is in finding 
the minimum of the mean square error defined as below: 
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Assuming normal distribution for speech and noise signals 
will end up in the following frequency response: 
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Another technique for noise suppression was developed by 
McAuley and Malpass [9] called maximum likelihood enve-
lope estimation which models speech as a deterministic 
waveform of unknown amplitude. The corresponding filter 
is given as: 
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If the suppression formulae for the above three methods are 
considered it becomes apparent that the Wiener filter is most 
suppressive and maximum likelihood yields the least sup-
pression. The above algorithms are easily shown to be spe-
cial cases of the generalized formula of the following equa-
tion (11). By changing α β and  parameters from 0 to 1 a wide 
range of filters are obtained. 
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α = ½, β = ½ … maximum likelihood 
α = 1, β = ½ … power subtraction 
α = 1, β = 1…. Wiener filter 

3.2. Selection of Parameters 
The selection of α and β parameters can be adaptively re-
lated to the noisy input signal condition. Once the SNR of 
the signal is low, it is desirable that the filter functions simi-
lar to a suppressive filter such as Wiener filter and in case of 
high SNR the filter magnitude should increase to close to 
unity to avoid distortion of speech components.  
By inspecting (11), it is apparent that α parameter controls 
the filtered portion of the signal. We choose noise to signal 
ratio (NSR) as a proper value for α. It is calculated on a 
frame-by-frame basis and its maximum value is set to 1. 
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The parameter β affects the amount of suppression applied 
at a given frequency bin. We intend to make it speech con-
tent dependent and choose the filter suppression to be higher 
when the signal spectrum is flat and represents a noise-like 
spectrum, and a lower suppression is required when the de-
tected spectrum is tone-like. Among various mathematical 
descriptors of audio and speech signal features investigated 
in [10], spectral flatness measure (SFM) and spectral crest 
measure (SCM) are most closely related to our require-
ments. Equation (13) defines the spectral flatness as the ratio 
of the geometric mean to the arithmetic mean of the energy 
spectrum: 
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Where a(k) is the amplitude in frequency band number k. for 
tonal signals SFM is close to 0 whilst for noisy signals it is 
close to 1. The other spectral shape descriptor is spectral 
crest factor which is computed by the ratio of the maximum 
value within the band to the arithmetic mean of the energy 
spectrum value. 
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     (14) 
Thus inverse SCM (SCM-1) seems to be a possible value for 
β. However, unlike the SFM, the SCM theoretically has no 
upper bound and using SCM-1 in place of β means the filter 
magnitude can be irregularly small. Thus, similar to what we 
did for α, we limit the minimum value of SCM-1 to be 0.1. 
3.3. Noise Reduction  Framework 
In this subsection the implementation details of the algo-
rithm is described. The block diagram of the system is 
shown in Fig.3. Through some experiments, it was observed 
that a window length of 64ms time length with 50% overlap 
is suitable. The following step is to decompose the frame to 
its critical band components using PWPT. The 19 obtained 
sub-bands are passed to the analytic decomposition section. 
Similar to most methods, we do not modify the phase of the 
signal. Prior to applying the suppression rule, we utilize 
minimum tracking algorithm for noise estimation as de-
scribed in [11] which is suitable for slowly varying noise 
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Figure 1 - Framework of the Proposed Noise Reduction System 

 
level. Here we use squared envelope to represent the short 
time power of the sub-band.  
The minimum tracking algorithm tracks minima of a 
smoothed periodogram. The smoothing process is preformed 
with a recursive iir filter: 

2|),(|)1(),1(),( kXkPkPx λδλδλ −+−=      (15) 

Where |X(λ,k)|2 represents the short time power of the sub-
band k in frame λ. The smoothing coefficient δ  is constant 
and proportional to the sampling frequency of the sub-band. 
The next step is to compute the parameter α of equation 
(11). We use estimated noise power along with the 
smoothed periodogram derived from (15) in (12). To com-
pute the proper value for β based on abovementioned formu-
lation of spectral shape descriptors we calculate the spectral 
measure by employing samples of |X(λ,k)|2 in frame number 
λ as ( )ka  in expression (13) or (14) . Next we apply the fil-

ter based on the general rule of (11). We also use a floor 
constant as defined by Berouti [12] for the lower bound of 
the filter. Subsequently, we reconstruct the sub-bands with 
the enhanced envelope and the phase of noisy input. The 
final step is to join the sub-bands through the synthesis step 
phase of the inverse wavelet packet transform. 

4. EXPERIMENTAL EVALUATION 

To perform objective evaluations of our method we used 
different measures. A segmental version of the objective 
measure proposed in an ETSI’s standardization project [13] 
was used. This measure computes the segmental SNR im-
provement (SNRImp) separately in three energy classes of 
speech: high, medium and low energy. The final value is 
computed by averaging over the three classes. 
Segmental SNRImp improvement in each class is defined as: 

( )
( )

( ) ( )( )
( )

∑

∑
∑ −+

=

−+

=
−

= −
= 11

2

11
2

1

0
10,

ˆ
log10

Nm

mNn
cc

Nm

mNn
CM

mC
Cimp

nsns

nn

M
SNR

C  

  (16) 
in which nc, sC and ŝC are noise, clean and reconstructed sig-
nals in specified class, C. MC is the number of segments of 
class C, and N is the length of each segment and is set to 320 
samples at the sampling rate of 16 KHz.  
Besides, we employ the ITU standard, PESQ (Perceptual 
Evaluation of Speech Quality) [14] which predicts subjec-
tive MOS for a variety of speech distortions in communica-
tion systems. The investigations in [15] show that this meas-

ure is most correlated with subjective judgments of quality 
degradation of speech signal. 
Wideband speech signals sampled at 16 KHz were em-
ployed as test signals to evaluate the performance of the 
system. We used 12 sentences from 6 male and 6 female 
speakers. We added white Gaussian, babble and destroyer 
engine noise to these sentences at different SNR levels. The 
results are shown (as average on all files both in terms of 
subjective measure of MOS and objective measure of SNR 
improvement) in table 2. These results show a significant 
improvement especially in terms of predicted PESQ MOS 
scores when using our parametric filter varying both α and β 
(employing SCM-1) in comparison with Wiener and Power 
Subtraction method.  
Table 3 presents the predicted MOS measures when SFM 
and SCM-1 are utilized in the general rule and compares the 
result with the case of fixed β = 1 (α is kept constant and 
equal to 1 in these experiments). In most cases an improve-
ment is observed. Nevertheless, it can be seen that SCM-1 
gives slightly better results. In fact using SCM-1 makes the 
algorithm biased toward less distortion especially in speech 
segments while SFM guarantees more suppression in case a 
relatively flat spectrum is detected. This is a justification for 
its use in our parametric filter. It is noted that it was first 
established that using a parametric filter changing α only 
(with β = 1) was beneficial.  

 

Table 2 - Results for three types of noise: White Gaussian, Babble 
and Destroyer engine noise 

 SNR 20dB 10dB 5dB 3dB 
MOS parametric 3.42 2.80 2.39 2.28 
MOS power sub 3.11 2.53 2.29 2.25 
MOS wiener filt 3.38 2.76 2.37 2.29 

SNRImp parametric 1.08 1.27 1.93 2.88 
SNRImp power sub 0.72 0.89 2.11 2.35 

W
G

 

SNRImp wiener filt 1.11 1.85 2.07 2.79 
MOS parametric 3.11 2.37 1.92 1.79 
MOS power sub 2.84 2.25 1.79 1.74 
MOS wiener filt 3.09 2.31 1.81 1.72 

SNRImp parametric 0.67 0.96 1.24 2.25 
SNRImp power sub 0.35 0.46 1.57 1.98 

B
A

B
 

SNRImp wiener filt 0.72 1.13 1.34 2.08 
MOS parametric 3.28 2.53 2.15 1.98 
MOS power sub 2.93 2.27 2.09 1.69 
MOS wiener filt 3.25 2.41 2.12 1.93 

SNRImp parametric 0.95 1.15 1.74 2.75 
SNRImp power sub 0.58 0.72 1.96 2.23 

D
E

ST
 

SNRImp wiener filt 0.98 1.57 1.77 2.58 

Segmentation 

Analytic 
Decomposition 

X(n) 

  Sub-band envelope Sub-band phase 

Noise 
estimation 

α ,β 

Adaptive filter 
IPWPT Y(n) 

Reconstruction of 
the enhanced sub-

band 

  PWPT 
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Table 3 - Results for three types of noise comparing β measure  

 SNR 
PESQ 
SFM 

PESQ 
SCM-1 

PESQ 
β =1 

SNR 
SFM 

SNR 
SCM-1 

SNR  
β =1 

20dB 3.12 3.21 3.27 0.75 1.09 0.38 

10dB 2.75 2.74 2.68 0.93 1.63 0.67 
5dB 2.38 2.42 2.28 1.12 0.98 1.11 W

G
 

3dB 2.25 2.35 2.14 2.04 2.79 1.59 

20dB 2.84 2.57 2.75 0.34 0.23 0.17 

10dB 2.43 2.23 2.38 0.56 0.54 0.42 
5dB 2.18 2.05 2.12 0.71 0.67 0.74 B

A
B

 

3dB 2.09 1.89 1.91 1.58 2.12 1.09 

20dB 3.09 2.84 3.01 0.58 0.82 0.27 

10dB 2.69 2.38 2.45 0.76 1.23 0.58 
5dB 2.32 2.13 2.21 0.98 0.79 0.93 D

E
ST

 

3dB 2.17 2.05 2.01 1.78 2.37 1.34 

 
As far as complexity is concerned our previous experi-

ments [5] comparing Martin's spectral subtraction algorithm 
[11] implemented in Fourier domain with our implementa-
tion in Hilbert domain and critical sub bands, showed that 
our algorithm not only gives better results but is even faster 
in terms of cpu time usage; although it seemed that the par-
ticular implementation used [16] may not have been opti-
mized for speed. It is worth mentioning that the parametric 
implementation presented here does not add considerably to 
the complexity of our previous implementation.  

5. CONCLUSION 

In this research we established a speech enhancement system 
based on a general rule which is adaptable to the input noisy 
signal. Time-varying parameters which are related to SNR 
and spectral shape of noisy speech control the shape of the 
filter. It was observed that this selection results in less musi-
cal noise and distortion. Furthermore we combined this en-
hancement system with a spectral analysis scheme to reduce 
the effects of the residual noise. We employed perceptual 
features of wavelet and Hilbert transform along with their 
capabilities to reveal local, non-stationary characteristics of 
speech signal. A comparative study through different meas-
ures revealed improved quality of speech by the application 
of the proposed method. 
We intend to evaluate and compare the performance of 
newer algorithms such as MMSE Log Spectral Amplitude 
Estimator with the algorithm presented here in the future. 
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