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ABSTRACT

The source separation based on a statistical and computa-
tional technique is one of the most exciting topic in a mul-
tivariate signal analysis. We proposed a novel source sepa-
ration technique using a tensor product expansion[1]. This
technique is the signal separation that the background noise,
which is observed in almost all input signals, can be esti-
mated by using a tensor product expansion where the abso-
lute error is used as the error function (TPE-AE). The effec-
tiveness of TPE-AE for artificial signals and real signals is
represented in [1]. However, TPE-AE has two problems; one
is that a result of TPE-AE is strongly affected by Gaussian
random noise, another one is that an estimated signal varies
widely due to a random search. In order to solve these prob-
lems, signal estimation techniques based on a median and
Modified Trimmed Mean (MTM) are proposed in this paper.
These methods calculate the outer product using a non-linear
filter to estimate the background noise. Results show that
novel techniques can separate the background noise more ac-
curately than the conventional TPE-AE.

1. INTRODUCTION

It is well known that the multivariate analysis is useful for
extracting the features of bivariable functions. The ma-
jor method of extracting the characteristics of second-order
statistics like principal component analysis (PCA) produces
some global feature of various data. PCA is the powerful
tool for the feature extraction, however, PCA does not focus
on the signal separation.

A tensor product expansion (TPE)[2][3] can approximate
an m-variable function as the sum of the product of m single
variable functions (SVFs). This technique is applied to non-
linear system identification[4], 3-D image processing[5], and
achieve a substantial results, respectively. The tensor is cal-
culated by minimizing a mean square error (MSE) between
the input vector and the sum of the product of SVE. Assume
that an input signal expressed by 2-D matrix is composed of
the background noises and local signals, the signal separa-
tion using TPE is difficult since local signals are treated as
outliers. Main cause is that the separated signal is strongly
affected by local signals due to MSE. We have shown that a
tensor product expansion with absolute error (TPE-AE)[1] is
effective to separate local signals from the background noise.
The local signal is observed in just few signals while the
background noise is seen in most signals (Fig.1). TPE-AE is
also effective to estimate the background noise from the elec-
tromagnetic wave data observed at ELF band [6]. However,
aresult of TPE-AE is strongly affected by Gaussian random
noise. Moreover, it is difficult to estimate the background
noise uniformly due to the random search on the calculation
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of TPE-AE. In this paper, signal estimation techniques based
on a median and MTM are proposed to overcome the weak-
ness of TPE-AE. These methods calculate the outer prod-
uct using a non-linear filter to estimate the background noise
without the error function.

This paper is organized as follows. Sect.2 gives the
outline of TPE-AE. The background noise estimation tech-
niques based on a median and MTM are explained in Section
3. In Sect.4, some computer simulation results using an arti-
ficial signal are presented. Finally, the conclusion is given in
Section.5.

2. CONVENTIONAL METHOD
2.1 TPE-AE

Tensor product expansion (TPE) is known that the 2-D TPE
is the same as singular value decomposition, hence, it can be
considered that 2 vectors derived by TPE are the first princi-
pal component and its eigenvector, respectively.

Assume that the observed signal consists of two source
signals, the one is observed in most signals (a background
noise) while another is seen in just few signals (a local sig-
nal). In this case, the latter signal can be considered as the
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outlier. The separation problem becomes the simple model.
It is only necessary to extract either few outliers or the back-
ground noise from the observed signals (Fig.1), while ma-
jor blind source separation (i.e. independent component
analysis) often estimates the n sources from » input signals
[7]1(Fig.2).

In order to separate a background noise and a local sig-
nal, the absolute error was employed as a new criterion to
calculate the tensor product[1]. It is known that an absolute
error have little influence of outliers. Let 4(/;,;) be an in-
put 2-D matrix consists of observation signals, the tensor of
a 2-D matrix calculated by TPE-AE is given as:

q1 92

=Y > |h(l,b)—

Lh=1h=1

(filh) fa(2) + f3(1))] (D

where J is the error function, fi (/1) f2(l2) and f3(l») are ap-
proximation terms of AC and DC components, respectively.
q1 is the length of the signal, ¢, is the number of observa-
tion signals, f1(/;) and f>(ly) are /;th and l,th element of
a vector, respectively. fi(/1), f2(l2) and f3(I»), which yield
minimum J, gives us the global noise included in the input
matrix h(ly,l).

The simple and reasonable method based on Monte
Carlo Simulation (MCS) was applied to calculate the optimal
f1(l), f2(L), f3(L). MCS produces optimal solutions by ex-
tensive trials using random numbers. The feasibility and sep-
arability conditions of this method for the background noise
estimation are confirmed in [1].

By using TPE-AE, an estimated background noise is rep-
resented by f1(/1) f2(I2) + f3(l2). Thus, a local signal can be
calculated by subtracting £ (I1) f>(l2) + f3(l2) from h(ly,1).

3. BACKGROUND NOISE ESTIMATION USING
NON-LINEAR FILTER

TPE-AE calculates the tensor product which minimizes the
sum of an absolute error between an input data (/,1,) and a
tensor product fi(11) f2(L) + f3(l»). However, we need to de-
fine the optimal variance of a random number in MCS since
the large variance does not give us correct solutions while
small numbers yield the local minimum. Moreover, MCS
cannot estimate the background noise uniformly due to the
random search. In order to solve these problems, we propose
the estimation techniques of the background noise based on
the outer product calculated by the nonlinear filter.

3.1 Median method

The median is applied to calculate the outer product for
avoiding the influence of the random search. The median fil-
ter is generally used to reduce an impulsive noise in an image
data. The median is calculated by sorting all the values from
the neighborhood into numerical sequence and then finding
the middle value of the input sequence (Fig.3).

Assume that f>(l), f3(2) is a constant value, respec-
tively. We calculate an optimal fj(/;) to minimize the cri-
terion (1). The absolute error Jy, at [; = m is gives as:

q2
f= 2 Ih(m,h)—

h=1

(fi(m) fa(l2) + f3(R2))]. )

fi(m), which yields J;, = 0 at [, = n, is expressed as:
fi(m) = (h(m,n) — f3(n))/ f2(n). 3)
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Then we get g, solutions from (2) and (3). Since the median
minimizes the sum of an absolute error in data, the middle
value of f|(m) gives us the minimal J¢, in (2). Therefore, we
have following update formula:

Sfi(ly) =medp ((h(l, 1) — f3(k))/ f2(12)). 4

where med,; () returns a median in the window /, of width g,.
Similarly, update algorithms for f>(l2), f3(l») are obtained by
the following expressions.

fa(la) = med; (A1, o) — f3(12))/ f1(lh)) (5)
f3(l) = med;i (h(ly, 1) — fi(lh) f2(1)) (6)

(4) - (6) produces background noises by extensive trials us-
ing a median. At first, fi(/1), f2(2), f3(l») are initialized by
a small random number. The outer product to estimate the
background is given as following steps:

I. Estimate the f3(/,) using (6)
II. Estimate the f> (/) using (5)
III. Estimate the f;(;) using (4)

The termination criteria for above iterative steps should
be decided. The iteration time is referred as Kygp. This
method calculates the outer product indirectly without the
error function by using a median.

3.2 MTM method

In TPE-AE, the background noise, which is observed con-
currently with local signals, is not estimated accurately due
to an effect of Gaussian signal. In order to improve the esti-
mation performance, MTM [8][9] is applied to calculate the
outer product corresponding to a background noise. TPE-AE
and a median method focus on the minimization problem of
the sum of the absolute error between an input matrix and its
outer product. MTM method is not focused on any criteria.

The running median calculates the median of the obser-
vations in the window of width 2k + 1.

MED()C[I) :med(xll_k,...,xll+k),l| e’ 7

Trimmed means were proposed as a compromise be-
tween moving averages and medians. MTM defines the
amount of trimming signals depending on the current time
window. Input data, which is closer than a given distance p;,
from the middle value, is averaged by MTM filter (Fig.3).
The calculation is given as:

MTM( 3

xll |I |1621; Xiy+i ¢))
Iy =i=—k,.k:|x,;— | <py
[:111 :med(xll_k,...,xll+k),ll cZ.
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If p;, =0, (8) outputs the median while p;, = oo gives us the
moving average. In order to obtain p;,, the median absolute
derivation (MAD) or a standard validation is often used to
achieve a robust estimation. This paper applies the MAD
method expressed as:

6'[1:4 =Cp- med(|x11_k - ‘I:Lll |, ceey |xll+k - ‘I:Lll |) (9)
where p;, = 26‘{1’1 , cp 1s the important factor to define the
threshold for a trimming. ¢, depends on the window widths
g1 and g, of input vectors. MTM filter provides a reliable
and an accurate estimation since outliers, which are at the
extremes of the sorted list, are not averaged.

Assume that MTM;;() outputs the MTM from (8) in
the window [; of width ¢;. The update formula for
fi(l), f2(I2), f3(I2) based on MTM is expressed as:

fi(l) =MTMp((h(l1, 1) — f3(R))/ f2(l2)) (10)
fa(la) = MTMy ((A(l1,12) — f3(l2))/ f1 (1)) (11)
f3(k) =MTMy (h(ly, 1) — f1(l) f2(l2)) (12)

The outer product, which approximates the background
noise, is calculated by the iterative algorithm using (10) -
(12). The iteration time of this algorithm is referred as Kysrp;-
We call this iterative algorithm a MTM method.

4. SIMULATION RESULTS
4.1 Artificial signal

The simulation results of a median and a MTM method are
shown to demonstrate its effectiveness for the background
noise reduction. A simple artificial signal based on known
functions is applied to the conventional and proposed meth-
ods. The artificial signal composed of a background noise
component and a local signal are generated by a sine wave
and a block pulse, respectively. The separability condition
of TPE-AE was confirmed in [1]. Assume that a background
noise is observed at almost input signals while a local signal
is included in a few signals. Table 1 lists the conditions of
the input matrix A(ly,l;) shown in Fig.4, where /; indicates
the index of the time courses, [, is the index of the artificial
signal A-E (0 to 4). The vertical axis in Fig.4 shows the am-
plitude of an artificial signal, the horizontal axis indicates the
cycle of sine wave (/;/576). In the input matrix, 2 signals
include a local signal in cycles 7 to 10.

According to an empirical result, Kygp, Kyry are de-
fined as 10, ¢, is 1.7. The averaged absolute errors be-
tween the estimated signal (f1(/;)f2(l2) + f3(l2)) and an ac-
tual background noise (sine wave) are shown in Fig.5. This
figure indicates errors of 100 trials using different initial
numbers. The vertical axis shows the averaged absolute er-
ror, the horizontal axis indicates the index of each trial. From
Fig.5, the averaged absolute error of TPE-AE is distributed
from 0.04 to 0.12 while the errors of a median and a MTM
method is found in 0.05 and 0.03, respectively. This is at-
tributed to the fact that TPE-AE often gives us the poor re-
sults since the MCS is strongly affected to the initial number
and the random number of the update algorithm.

From Fig.5, the absolute error of a MTM method is
smaller than its median method. In order to identify a spe-
cific cause of this fact, the local signals, which are the result
of subtracting an estimated signal from an input signal, are
shown in Fig.6 and Fig.7. The horizontal and the vertical

Table 1: Conditions of the artificial signal

Background noise Block pulse
A sin(27t/576)/3.0+N(0.8,0.052) none
B | sin(27/576)/3.0+N(1 .2,0.052) 0.3
C | sin(2m/576)/4.04N(1.0,0.05%) none
D | sin(27/576)/5.04N(0.8,0.05%) 0.6
E | sin(2n/576)/5.0+N(1.2,0.05%) none
:N(u,6%) means Gaussian noise 4 is mean, G~is variance
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methods

axis are the same as Fig.4. From results of TPE-AE and me-
dian method, the local signal constructed of a block pulse is
shrunk during 7 - 10 cycle. On the other hand, the local sig-
nal calculated by a MTM method does not yield the decay
of signals. The main cause is that if the local signal is in-
cluded less than just half of observed signals, a median filter
outputs the largest value of the Gaussian noise while MTM
filter outputs its mean value (Fig.3). It means that a MTM
method does not shrink local signals compared to other meth-
ods. Thus, a MTM method is more effective in eliminating
the background noise than a median method and TPE-AE.

4.2 Sound data

In order to demonstrate the separability of the proposed
method, the artificial signal composed of two real sounds is
applied to three methods. Real sounds shown in Fig.8 are
the recorded vowel /a/ and a sound of clap hands sampled at
8000Hz. The vowel and a clap are treated as the background
signal and a local signal, respectively. Table 2 indicates the
conditions of the input matrix A(l;,l;) without a time delay,
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Table 2: States of the input signal

Background signal | Local signal
A | Sp-1.04N(0,0.01%) Si2
B | Sz-0.8+N(0,0.01%) St
C | S5-1.24N(0,0.01%) none
D | Sz-1.04N(0,0.01%) none
E | Sg-0.9+N(0,0.01%) none

N(u, 02) means Gaussian noise U is mean, o2is variance
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From Fig.10, the mean of absolute errors for TPE-AE is
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Figure 7: The result of subtracting estimated signals from an
input signal: MTM method (left hand side), Median method
(right hand side)

where Sp is the background signal (Fig.8(a)), Sy means the
local signal (Fig.8(b)). The purpose of this simulation is to
separate the vowel and a clap from the input signal shown in
Fig.9.

Kyep, Kurm are 10, ¢, is 1.7. The averaged absolute
errors between the estimated background signal and an actual
background signal (vowel) are plotted to Fig.10. This figure
includes results of 100 trials using different initial numbers.
The vertical and horizontal axes are the same as Fig.5. The
separated background signals and local signals are shown in
Fig.11 and Fig.12. The vertical line indicates the amplitude,
the horizontal line is the time (sec).

From Fig.11 and 12, the background signal and the local
signal, which are composed of a vowel and a clap respec-
tively, are separated by using three methods. Moreover, a
few difference between local signals estimated by each tech-
niques is found in these figures.

distributed about 23.5 x 1073 while the result of median and
a MTM method is found in 5 x 1073 and 4.5 x 1073, respec-
tively. Compared to other methods, TPE-AE often gives us
the poor estimation results, the median method does not pro-
duce the estimation result uniformly.

From these results, we confirmed that a MTM method is
more effective in signal separation from the artificial signal
composed of real data than median method and TPE-AE.

5. CONCLUSION

In this paper, we proposed signal estimation methods based
on the nonlinear filters that calculate the outer product. The
conventional method using TPE-AE is strongly affected by
Gaussian random noise when the anomalous signal is in-
cluded. Moreover, it is difficult to estimate the background
noise uniformly due to a difficulty on the calculation of TPE-
AE. Simulation results have shown that a median and a MTM
method can estimate the background noise more uniformly
than a conventional method. Other results have shown that
a MTM method can estimate a background noise and a local
signal without the shrinkage of each component.

The separability conditions of TPE-AE had shown in a
conventional research. However, the separability of a MTM
method is not clarified yet. Remaining problems are to ex-
tend the proposal to the signal separation with time delay and
to show the separability condition of a MTM method.



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

x10 ~
24 T

235 W"\.,M‘\/\W\/\/\/\/\WVM

23r q

S ~ ~
5 ~ ~
o
5 55¢ B
o
2 1
< W o) ' Coa ik Ay
A5 A I W L ~"»15 5 iThan
LR R - [LEE E ER B O F TS [N Vo
A T T AP T TR R LY e R N S TR E E
I e R T L A W e I T N TS
] T L R U S P A T LTI B L I
- oty : Vi oy o
'y \4'- N 1 Ay
P R R Ne=m—— PR o mmy
= = = MTM method
------ Median method
Conventional
4 I I I I I I I T T
10 20 30 40 50 60 70 80 90 100
Trial number

Figure 10: Absolute errors for conventional and proposed
methods

0.2 0.2

0.1 0.1
(] (]
o °
2 2

= 0 3 0
£ £
< <

-0.1 -0.1

-0.2 -0.2

0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03  0.04 0.05
Time [sec] Time [sec]

0.2 0.2

0.1 0.1
o o
° °
2 2

k= 0 k= 0
13 £
< <

-0.1 -0.1

-0.2 -0.2

0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
Time [sec] Time [sec]

Figure 11: Estimated background signal and local signal:
Original signal (left hand side), TPE-AE (right hand side)
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MTM method(left hand side), Median method (right hand
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