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ABSTRACT

Bit interleaved Coded Modulation with iterative decoding
is known to provide excellent performance over both Gaus-
sian and fading channels. However a complete analysis of
the iterative demodulation is still lacking. In this paper,
we complete the geometric interpretation of turbo-like iter-
ative demodulation and we give an interpretation for the ex-
trinsic propagation. We prove that iterative demodulation
is the Dykstra’s algorithm with I-projections and reverse I-
projections.

1. INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) was first sug-
gested by Zehavi in [1] to improve the Trellis Coded Modula-
tion performance over Rayleigh-fading channels. In BICM,
the diversity order is increased by using bit-interleavers in-
stead of symbol interleavers. This improvement is achieved
at the expense of a reduced minimum Euclidean distance
leading to a degradation over non-fading Gaussian channels
[1], [2]. This drawback can be overcome by using iterative
decoding (BICM-ID) at the receiver. BICM-ID is known to
provide excellent performance for both Gaussian and fading
channels.
The iterative decoding scheme used in BICM-ID is very sim-
ilar to serially concatenated turbo-decoders. Indeed, the se-
rial turbo-decoder makes use of an exchange of information
between computationally efficient decoders for each of the
component codes. In BICM-ID, the inner decoder is re-
placed by demapping which is less computationally demand-
ing than a decoding step. Even if this paper focus on itera-
tive decoding for BICM, the results can be applied to the
large class of iterative decoders including serial or parallel
concatenated turbo decoders as long as low-density parity-
check (LDPC) decoders. The turbo-decoder and more gen-
erally iterative decoding was not originally introduced as the
solution to an optimization problem rendering the analysis
of its convergence and stability very difficult. Among the
different attempts to provide an analysis of iterative decod-
ing, the EXIT chart analysis and density evolution have per-
mitted to make significant progress [3] but the results devel-
oped within this setting apply only in the case of large block
length. Another tool of analysis is the connection of iter-
ative decoding to factor graphs [4] and belief propagation
[5]. Convergence results for belief propagation exists but are
limited to the case where the corresponding graph is a tree
which does not include turbo code or LDPC. A link between
iterative decoding and classical optimization algorithms has
been made recently in [6] where the turbo decoding is inter-
preted as a nonlinear block Gauss Seidel iteration for solving

a constrained optimization problem. In parallel, a geometri-
cal approach has been considered and provides and interest-
ing interpretation in terms of projections. The particular case
of BICM-decoding has been studied by Muquet in [7] where
the decoding sub-block is interpreted as two successive pro-
jections. The interpretation of the demapping sub-block in
terms of projection remains unachieved. In [8], the turbo-
decoding is interpreted in a geometric setting as a dynamical
system leading to new but incomplete results. The failure to
obtain complete results is mainly due to the inability to ef-
ficiently describe extrinsic information passing in terms of
information projection.
Here, we emphasize the connection between iterative decod-
ing and the Dykstra’s algorithm from the convex optimiza-
tion literature [9]. The extrinsics are exactly the deflected
versions of the previous outputs passed through the blocks in
the Dykstra’s algorithm.

2. TOOLS

2.1 BICM-ID with soft decision feedback

A conventional BICM system [2] is built from a serial con-
catenation of a convolutional encoder, a bit interleaver and
an M-ary bits-to-symbol mapping (where M = 2m) as shown
in fig. 1. The sequence of information bits b is first encoded
by a convolutional encoder to produce the output encoded bit
sequence c of length Lc which is then scrambled by a bit in-
terleaver (as opposed to the channel symbols in the symbol-
interleaved coded sequence) operating on bit indexes. Let d
denote the interleaved sequence. Then, m consecutive bits of
d are grouped as a channel symbol dk = (dkm+1, ...d(k+1)m).
The complex transmitted signal sk = ε(dk), is then chosen
from an M-ary constellation Ψ where ε denotes the mapping
scheme. For simplicity, we consider transmission over the
AWGN channel. The received signals can be written as :

yk = sk + nk 1 ≤ k ≤ Lc/m (1)

where nk is a complex white Gaussian noise with indepen-
dent in-phase and quadrature components having two-sided
power spectral density σ2

c .
Due to the presence of the random bit interleaver, the true

Figure 1: Transmission model

maximum likelihood decoding of BICM is too complicated
to implement in practice. Figure 2 shows the block diagram



of the receiver for a BICM-ID system with soft-decision
feedback. In the first iteration, the encoded bits are assumed

Figure 2: Receiver for a BICM-ID with soft-decision feedback

equally likely. The demapping consists in evaluating a pos-
teriori probabilities (APP) for the encoded bits without ac-
counting for the code structure, namely:

pAPP(dkm+i = b) = p(dkm+i = b | yk) ∼ ∑
sk∈Ψ

i
b

p(yk | sk)p(sk)

(2)
where Ψi

b, b ∈ {0,1}, denotes the subset of Ψ that contains

all symbols whose labels have the value b in the ith posi-
tion. In the turbo decoding process, the quantities exchanged
through the blocks are not a posteriori probabilities (APP)
but extrinsic information [10]. The extrinsic information
at the output of the demapping p(dkm+i;O) is computed as
pAPP(dkm+i)/p(dkm+i; I) where p(dkm+i; I) is the a priori in-
formation for the demapping sub-block. Since the bit inter-
leaver makes the bits independent, the extrinsic information
p(dkm+i;O) reads:

p(dkm+i = b;O) = Km ∑
sk∈Ψ

i
b

p(yk | sk)∏ j 6=i p(dkm+ j; I) (3)

and the corresponding APP reads:

pAPP(dkm+i = b) = K′
m ∑

sk∈Ψ
i
b

p(yk | sk) ∏
1≤ j≤m

p(dkm+ j; I) (4)

where Km and K′
m are normalization factors and O and I refer

to the output and the input. Note that p(dkm+i;O) is com-
puted from the a priori probabilities p(dkm+ j; I) of the others
bits on the same channel symbol. However, we can also write
the APP using the whole sequence as:

pAPP(dkm+i = b) = p(dkm+i = b | yk) ∼ ∑
s:sk∈Ψ

i
b

p(y | s)p(s)

(5)
The extrinsic information p(dkm+i;O) is de-interleaved and
delivered to the SISO decoder [11] as an a priori information
on the encoded bits. Let cl = dσ−1(km+ j) where σ−1 is for the

permutation on the indexes due to the deinterleaver; p(cl; I)
is the updated input of the Soft Input Soft Output (SISO)
decoder. The extrinsic information at the output of the SISO
decoder is obtained through:

p(cl = b;O) = Kc ∑
c∈Rl

b

IC (c)∏
j 6=l

p(c j; I) (6)

and the corresponding APP is:

pAPP(cl = b) = K′
c ∑
c∈Rl

b

IC (c) ∏
1≤ j≤Lc

p(c j; I) (7)

where IC (c) stands for the indicator function of the code,

i.e. IC (c) = 1 if c is a codeword and 0 otherwise and R l
b

denotes the set of binary words of length Lc with value b in

the lth position. Kc and K′
c are normalization factors. The

extrinsic information p(cl;O) is interleaved and delivered to
the demapping sub-block as a regenerated a priori informa-
tion. The process is continued until the APP at the output of
the two sub-blocks are the same or until the maximal itera-
tion number is reached.
In the next section, we give an interpretation of the demodu-
lation process via information geometry.

2.2 Simple facts from information geometry

Suppose that p and q are probability measures defined on
subsets of H where H is the set of the first 2Lc integers.
The I-divergence of p with respect to q also called Kullback-
Leibler divergence is given by:

D(p ‖ q) =
k=2Lc

∑
k=1

p(k)ln(p(k)/q(k)) (8)

The minimum of D(p ‖ q) for p in a subset S of H is
denoted D(S ‖ q). If a unique minimizer exists it is called
the I-projection of q to S . Similarly, the minimum of
D(p ‖ q) for q in a subset S of H is denoted D(p ‖ S ). If
a unique minimizer exists it is called the reverse I-projection
of p to S [12]. These projections can also be termed
respectively as backward and forward Bregman projection
based on the Bregman distance D f with f (x) = xln(x)− x.
Now, we examine the projections onto linear and exponential
families. They are of particular interest in our context and
they give rise to a Pythagorean theorem.

Definition 1 ([13]) For any given function f1, f2, ..., fr on
H and numbers α1,α2, ...,αr, the set

L = {p :∑
x

p(x) fi(x) = αi,1 ≤ i ≤ k}

if non empty, will be called a linear family of probability dis-
tributions. Moreover the set E of all p such that

p(x) = cq(x)exp(
r

∑
i=1

θi fi(x)), f or some θ1, ...,θr

will be called an exponential family of probability distribu-
tions; here q is a given distribution and c is a normalization
factor.

The linear family L is completely defined by the functions
f1, f2, ..., fr and the scalars α1,α2, ...,αr. The exponential
family E is completely defined by the distribution q (which
belongs to E ) and the functions f1, f2, ..., fr.
Let EP denote the product manifold ie the set of all Lc-
variate distribution with independent components. This fam-
ily will reveal to be of great importance for our study. It is
clear that EP is an exponential family [7]. The Pythagorean
theorems are stated below:

Theorem 1 ([13]) The I-projection p∗ of q onto a linear
family L is unique and satisfies the Pythagorean identity

D(p ‖ q) = D(p ‖ p∗)+ D(p∗ ‖ q) ∀p ∈ L



Similarly, it exists a Pythagorean identity for reverse I-
projections on exponential families.

Theorem 2 ([12]) The reverse I-projection q∗ of p onto an
exponential family E is unique and satisfies the Pythagorean
identity

D(p ‖ q) = D(p ‖ q∗)+ D(q∗ ‖ q) ∀q ∈ E

For I-projections onto L , analytical results exist. The
I-projection p∗ of q onto a linear family (using notations in
definition 1) reads [14]:

p∗(x) = q(x)exp(−
r

∑
1

µ j( f j(x)−α j)) (9)

where the {µ j} are Lagrange multipliers determined from
the constraints. In the particular case where the functions
{ fi} in the definition of the linear family are the parity-check
equations of a code and if {αi} = 0, then the I-projection in
(9) reads [14]:

p∗(x) = q(x)exp(−µ0)I1(x)I2(x)...Ir(x) (10)

where Ii(x) is the indicator function for all vectors x which
satisfy constraint fi and exp(−µ0) is a normalization con-
stant. The indicator function for a codeword is IC (x) =
I1(x)I2(x)...Ir(x) since a codeword must satisfy all of the
parity constraint simultaneously. Thus, the I-projection p∗

of q onto the linear family LC formed with the parity-check
equations of the code C reads:

p∗(x) =
q(x)IC (x)

∑x q(x)IC (x)
(11)

The reverse I-projection q∗ of p onto EP also admits a
closed-form expression:

q∗(x) = q∗(x1,x2, ...xs) =∏
i

pi(xi) (12)

where pi(xi) is the marginal distribution on xi of the prob-
ability measure p. In the next section, the link between I-
projections, reverse I-projections and iterative decoding is
emphasized.

2.3 Interpretation of iterative decoding

Let pAPP(d) respectively pAPP(c) denote the probabil-
ity measure belonging to the product space EP with
marginal distributions pAPP(dkm+i)i=1,..,m;k=1,..Lc/m respec-

tively pAPP(cl)1≤l≤Lc
. From (5) and (12), we can conclude

that pAPP(d) is the reverse I-projection of p(y | s)p(d; I)
onto EP . With an AWGN channel, p(y | s) is a Gaussian
distribution, namely

p(y | s) = Kexp(−
‖ y− s ‖2

2σ2
c

)

where K is a normalization factor. Thus, from (9), p(y |
s)p(d; I) is the I-projection of p(d; I) onto the linear fam-

ily LM = {p : ∑x p(x) = 1 ∑x p(x) ‖ y−x ‖2= α(σ2
c )}.

Let ΠL respectivelyΠr
E

denote the I-projection onto the lin-
ear family L respectively the reverse I-projection onto the
exponential family E . Thus pAPP(d) = DM (p(d; I)) where:

DM : EP → EP : q 7→Πr
EP

[ΠLM
(q)]

Note that the linear family involved in the demapping is
changing from one iteration to another. However, at each
iteration, it exists a linear family such that p(y | s)p(d; I) is
the I-projection of p(d; I) onto this linear family.
From (7), (11) and (12), we can also conclude that pAPP(c) =
DC (p(c; I)) where:

DC : EP → EP : q 7→Πr
EP

[ΠLC
(q)]

The extrinsic information is obtained by the point-wise divi-
sion of the APP at the output of each block with the input of
the same block. The geometric interpretation of the iterative
decoding is summarized in fig. 3. Without extrinsic propaga-

Figure 3: Geometric interpretation of the iterative decoding

tion (ie with APP propagation), the iterative decoding would
be the alternate projection algorithm of Csiszár [15] or more
generally the method of Bregman retractions. The conver-
gence of these algorithms is well established for projection
onto closed convex sets. The linear families are closed con-
vex sets. The exponential families are log-convex and are not
closed [13]. Thus, the classical results on the convergence of
alternate minimization can not be applied in the setting of
iterative decoding so there is no guarantee that the APP pro-
vided by the demapping and decoding block will converge
toward the same limit. Dykstra’s algorithm is a well-known
algorithm with stronger properties than the alternate projec-
tion procedure. In the following section, we prove that the
propagation of extrinsic rather than APP is Dykstra’s algo-
rithm with I-projections and reverse I-projections.

3. MAIN RESULT

3.1 Dykstra’s algorithm with I-projections

Dykstra’s algorithm respectively the method of cyclic
projections are often employed to solve best approximation
respectively convex feasibility problems. The Dykstra’s
algorithm is an iterative procedure which (asymptotically)
finds the nearest point of any given point onto the intersec-
tion of a family of closed convex sets (best approximation
problem). In the method of cyclic projections, the output of
the previous projection is delivered to the next projection
whereas, in the Dykstra’s algorithm, only a deflected version
of the previous output is given as an input to the next
projection. The algorithm was first proposed and analysed
by Dykstra in 1983 for orthogonal projection onto closed
convex sets. This work was extended to I-projections in
1985 [9]. Here, we focus on the Dykstra’s algorithm with
I-projections [9].
Let ΠCi

stand for the I-projection onto Ci. Here i ∈ 1,2,3,4
(as in the iterative decoding) however the procedure is
valid for t projections with t finite. In the following,
the interleaver/deinterleaver is omitted. Actually, these
operators realize permutations of the bit indexes. As far
as Kullback-Leibler minimizations are concerned, these



permutations have no insights on the result of the projection.
All the products and divisions are point-wise operators:
u = (pq)/r stands for u(k) = (p(k)q(k))/r(k)∀k.

Dykstra’s algorithm

• Initialization
Let s1,1 = r and let p1,1 =ΠC1

(s1,1).
Let s1,2 = p1,1 = r(p1,1/s1,1). We note that if
s1,1(k) = 0, then so is p1,1(k). We take 0/0 to be
1. Set p1,2 =ΠC2

(s1,2).
Let s1,3 = p1,2 and set p1,3 =ΠC3

(s1,3).
Let s1,4 = p1,3 and set p1,4 =ΠC4

(s1,4).

• Iteration n
Let sn,1 = pn−1,4/(pn−1,1/sn−1,1) and let pn,1 =
ΠC1

(sn,1).
For i=2,3,4 Let sn,i = pn,i−1/(pn−1,i/sn−1,i) and let
pn,i =ΠCi

(sn,i).

For closed convex set, this procedure converges towards u ∈
C = ∩4

1Ci and D(u ‖ r) = argminp∈C D(p ‖ r) ie the proce-
dure converges towards the closest point to r in C . Note that,
for closed convex sets, the classical alternating minimization
procedure will also converge to a point in ∩4

1Ci, not neces-

sarily the closest point to r in ∩4
1Ci. For closed convex sets,

Dykstra’s algorithm solves the best approximation problem
whereas the alternating minimization procedure solves con-
vex feasibility problems. In that sense, Dykstra’s algorithm
exhibits stronger properties than the alternating minimization
procedure.

3.2 Linking Dykstra’s algorithm and iterative decoding

For comparison, we provide below the iterative procedure
commonly used in iterative decoding.

Iterative decoding

• Initialization
Let v1,1 = (1/2Lc ...1/2Lc) and set p1,1 =ΠLM

(v1,1).
Let v1,2 = p1,1 and set p1,2 =Πr

EP
(p1,1).

Let v1,3 = p1,2/v1,1 and set p1,3 =ΠLC
(v1,3).

Let v1,4 = p1,3 and set p1,4 =Πr
EP

(p1,3).

• Iteration n
Let vn,1 = pn−1,4/vn−1,3 and set pn,1 =ΠLM

(vn,1).
Let vn,2 = pn,1 and set pn,2 =Πr

EP
(pn,1).

Let vn,3 = pn,2/vn,1 and let pn,3 =ΠLC
(vn,3).

Let vn,4 = pn,3 and set pn,4 =Πr
EP

(pn,3).

Even if, at first glance, the two procedure seems slightly
different, they produce exactly the same sequence of pro-
jected distributions onto EP ie, they produce the same se-
quences {pn,2} and {pn,4} as stated in theorem 3. Note that,
in the iterative decoding, {pn,2} and {pn,4} are the APP at
the output of each sub-block which are intended to converge
towards the same solution p∗. The hard decisions rely on p∗.
Thus {pn,2} and {pn,4} are of particular importance in our
setting.

Theorem 3 Iterative decoding and the Dykstra’s algorithm
with r = (1/2Lc ...1/2Lc), ΠC1

= ΠLM
, ΠC3

= ΠLC
and

ΠC2
= ΠC4

= Πr
EP

lead to the same sequence of projected

distributions {pn,2} and {pn,4}.

Proof:

• Initialization. By definition, p1,1, p1,2 and p1,4 are the
same in the two procedures. In the iterative decoding,
p1,3 = ΠLC

(v1,3) = ΠLC
(p1,2/v1,1). Since v1,1(k) =

1/2Lc,∀k ∈ {1, ...,2Lc} then p1,3 = ΠLC
(p1,2) which is

the definition of p1,3 in the Dykstra’s algorithm.

• Iteration n. We prove here that sn,2 and vn,2 are propor-
tionals to:

pn−1,4 pn−2,4...p1,4

pn−1,2 pn−2,2...p1,2
exp(−

‖ y− s(d) ‖2

2σ2
c

) (13)

and that sn,4 and vn,4 are proportional to:

pn,2 pn−1,2...p1,2

pn−1,4 pn−2,4...p1,4
IC (c) (14)

For n = 2 case,

s2,2 =
p2,1 p1,1

p1,2

= r
p1,1

p1,2

p1,4

p1,1
exp(− ‖y−s(d)‖2

2σ2
c

)

= r
p1,4

p1,2
exp(− ‖y−s(d)‖2

2σ2
c

)

For the iterative decoding, v2,2 =
p1,4.r.
p1,2

exp(− ‖y−s(d)‖2

2σ2
c

).

Thus the property is true for the n = 2 case.
Moreover Πr

EP
(v2,2) = Πr

EP
(s2,2) = p2,2. In

the same way, we have v2,4 =
p2,2 p1,2

p1,4.r
IC (c) and

s2,4 =
p2,3s1,4

p1,4
=

p2,2 p1,2

p1,3

s1,4

p1,4
IC (c) =

p2,2 p1,2

p1,4
IC (c). So,

Πr
EP

(v2,4) =Πr
EP

(s2,4) = p2,4.

We suppose now that the proof is true at iteration n− 1

and we prove it at iteration n. We have sn,2 =
pn,1sn−1,2

pn−1,2
.

Since pn,1 is the projection of sn,1 onto LM , pn,1 ∝

sn,1exp(− ‖y−s(d)‖2

2σ2
c

). We also have sn,1 =
pn−1,4sn−1,1

pn−1,1
.

So sn,2 ∝
sn−1,2 pn−1,4sn−1,1

pn−1,2 pn−1,1
exp(− ‖y−s(d)‖2

2σ2
c

) which can

be simplified as sn,2 ∝
sn−1,2 pn−1,4

pn−1,2
since pn−1,1 is the

projection of sn−1,1 onto LM . This proves that sn,2 is
proportional to the expression in (13).
For the iterative decoding, vn,2 ∝ vn,1exp(−µ fLM

(d))
(where µ is a normalization constant and fLM

is the function related with LM ) or equiva-

lently vn,2 ∝
pn−1,4

vn−1,3
exp(− ‖y−s(d)‖2

2σ2
c

) thus vn,2 ∝

pn−1,4vn−1,1

pn−1,2
exp(− ‖y−s(d)‖2

2σ2
c

) =
pn−1,4vn−1,2

pn−1,2
which proves

that sn,2 is proportional to the expression in (13).
So we have, Πr

EP
(vn,2) =Πr

EP
(sn,2) = pn,2.

In the same way, we have sn,4 =
pn,3sn−1,4

pn−1,4
. Since

pn,3 is the projection of sn,3 onto LC , we get

sn,4 ∝
sn,3sn−1,4

pn−1,4
IC (c). Using the definition of sn,3

we obtain sn,4 ∝
pn,2sn−1,3sn−1,4

pn−1,3 pn−1,4
IC (c) which is equivalent

to sn,4 ∝
pn,2sn−1,4

pn−1,4
IC (c). So, sn,4 is proportional to the

expression in (14).



For the iterative decoding, vn,4 ∝ vn,3IC (c). The def-

initions of vn,3 and vn,1 leads to vn,4 ∝
pn,2

vn,1
IC (c) =

pn,2vn−1,3

pn−1,4
IC (c). Since vn−1,4 = pn−1,3 is the projection of

vn−1,3 onto LC , we finally obtain vn,4 ∝
pn,2vn−1,4

pn−1,4
which

proves that vn,4 is proportional to the expression in (14).
So the projections of vn,4 and sn,4 onto EP are the same.

�

In the original version of the Dykstra’s algorithm, all the
projections are I-projections onto (non-varying) closed con-
vex sets. In the iterative decoding, I-projections onto closed
convex sets are involved as long as reverse I projections onto
log-convex sets. Thus, the convergence results can not be ex-
tended straightforwardly to iterative decoding. In particular,
there is no guarantee that the iterative decoding converges
towards the closest point to r = (1/2Lc...1/2Lc) in the set
LC ∩LM ∩ EP . However, based on the duality between
projections onto linear and exponential families, the reverse
I-projection onto the set of separable densities is equivalent
to an I-projection onto a particular (varying) linear family
(see [16]). Thus, iterative decoding can also be written with
I-projections onto closed convex sets. The difference with
the classical Dykstra’s algorithm is limited to the “varying”
nature of the linear family involved in the minimization pro-
cess. A recent work gives some elements to tackle this prob-
lem. Indeed, Niesen and al. proposed in [17] a generalization
of the alternating minimization procedure of Csiszar to the
case of projections onto time-varying sets. This proof com-
bined with the convergence results in [9] seems a promising
direction of investigation for the derivation of new conver-
gence results for iterative decoding.

4. CONCLUSION

In this paper, we have presented some tools and concepts of
information geometry that apply for the description of iter-
ative receivers. The extrinsic propagation is very similar to
the deflected output propagation used in Dystra’s algorithm.
This similarity suggests that convergence results might be de-
veloped via this analogy.
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