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ABSTRACT algorithm constitutes a simple and canonical example of the

This paper proposes a new algorithm for Bernoulli-Gaussia@pplication. However, our simulation results indicatet tha
(BG) blind deconvolution in the Markov chain Monte Carlo it lacks reliability: from different initial conditions, ignifi-
(MCMC) framework. To tackle such a problem, the classicacantly different estimations are obtained, even after ichns
Gibbs sampler is usually adopted, as proposed by Ckeng erable iterations. This conclusion agrees with that of Bour
al. [1]. However, as already pointed out by Bourguignon andduignonet al. in the context of BG spectral analysis [2].
Carfantan [2], it fails to explore the state space efficientl The recent contribution of [7] already identified a conver-
In principle, a more efficient exploration technique couéd b gence issue linked to time-shift ambiguities, and proposed
obtained by integrating the Gaussian amplitudes out of thgn efficient way to solve it. There exists another source of
target distribution. Unfortunately, some of the samplitaps  inefficiency, unrelated to the time-shift ambiguity: ireste
then become intractable. Therefore, our solution mixgssste of exploring the ¥ configurations at an acceptable speed,
in which the amplitudes are integrated out with others wheréhe Gibbs sampler tends to get stuck in one particular con-
they are not. Thénvariant conditionis shown to hold, and figuration of g or another, as shown in Sect. 2.2. In fact,
simulations indicate that it behaves much more satisfigtor in @ multi-modal space a Markov chain equilibrates rapidly
than the reference Gibbs sampler. within a mode (a configuration af), but takes a long time
to move from mode to mode. Guan [8] studied a comparable
slow convergence phenomenon dbaal chain in compari-
son with hissmall worldMCMC approach.

The new Gibbs-type sampler proposed here explores the

1. INTRODUCTION posterior distributiormarginally to the amplitudese, such

The problem of the restoration of a sparse spike train disthat it probes the Bernoulli sequengemore freely in its
torted by a linear system and noise arises in many fields sucipace than Chenet al's Gibbs sampler. However, a plain
as seismic exploration [1, 3]. It is classically dealt with u Gibbs sampler of the marginal posterior distribution imes!
ing a discrete-time noisy convolution model for the obsdrve hardly implementable sampling steps. In particular, it is

Index Terms— Blind deconvolution, Bernoulli-Gaussian
model, Markov chain Monte Carlo methods

vectorz — [zl,...,zN]t: all but simple to simulatéh conditional onz and g and
marginally w.r.t.z. Our scheme solves this problem by in-
P corporating steps where the samplingaofs still involved,
Zn= ) hXnk+&,Vn=1..N. (1) while ¢ is sampled marginally w.r.tc. Therefore, it is a
K=0

Gibbs-type samplethough fully valid from the mathemati-
t . cal viewpoint, since the invariant condition is shown tochol
h = [ho,...,hp]" denotes the impulse response (IR) of they comparable idea is found in statistical signal segmenta-
system (assumed finite here). For the sake of simplicity, thgsp, [9] where some hyperparameters are partially marginal
zero boundary” condition is imposed ontthe sparse spikg;ed though without mathematical justification. Finafty;
train to be restored, such that= [x;,....xu], M =N—P.  the sake of conciseness, it will remain implicit that thegim
¢ is a stationary white Gaussian noise. The deconvolutioBhift ambiguities are dealt with according to [7] in Chestg
problem is saidlind whenh is unknown. _ als Gibbs sampler, as well as in the proposed sampler.
In the present study, we adopt a BG model for the spike | Sect. 2, the blind BG deconvolution problem is for-
train z, following [3] and many posterior contributions such myjated. The Gibbs sampler of the joint posterior distribu-
as [1, 4. A BG signal is defined in two stages involv- tion [1] is also presented, and an example illustrates its in

ing a Bernoulli sequence = [q....,qw]} such thattym= efficiency. Our Gibbs-type sampler is introduced in Sect. 3
1....M and a simulated example gives an insight into the way it es-
. 2 capes from suboptimal configurations. The invariant condi-

Om ~ Bi(A), (Xm|Gm) ~ -#(0,0m0%). (2)  tion is shown to hold, and an adapted implementation in-

The sparse nature of the spikes is governed by the Bernouﬁpired {f%m [é] ist pAtoposed. Finally, simulation resulte ar
law, while amplitudes are assumed iid zero-mean GaussiafieSented in sect.

The MCMC approach [5, 6] is a powerful numerical tool, ap-

propriate to solve complex inference problems such as blind 2. PROBLEM FORMULATION
deconvolution. In the field of blind BG deconvolution, Cheng L

et al. pioneered the introduction of MCMC methods [1]. 2.1 Statistical model

They proposed to rely on a Gibbs sampler, for which theirAkin to [1], the following assumptions are made:
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e £~ .#(0,021) is independent of andh; o4 e 04 °
e x is a BG process defined by (2) with, = 1; 0.2 ‘ ‘ 02 ‘ |
e hr~ f/V(07 U§1p+1); 0 0 ‘ i ‘
0, is arbitrarily set to one in order to remove the scale ambi- **~ 5 10 15 20 " 5 10 15 2
guity inherent to the blind deconvolution problem. Accord- (a) Initial configuration. (b) 50th iteration
ing to the Monte Carlo principle, a posterior mean estimator .
of @ ={q,x,h,A,0¢,0r} givenz can be approximated by: o4 04 I
0.2 0.2
N 1 | . 0 T L 0
e = m e( )a (3) 0.2 5 10 15 20 02 5 10 15 20
k=J+1 (c) 300th iteration (d) 396th iteration

where the sum extends over the last J samples. In the Fig. 1. Sampled BG sequences obtained by Chengl’s
MCMC framework, the samples are generated recursively, SQampIer on a simple example. From a suboptimal configu-

that the asymptotic distribution @™ is the joint posterior ration chosen as initial state, the Markov chain spends sev-
distribution [6]: eral hundreds of iterations before visiting the solutica, a
p(0]2) 0 g(z—ah; GEIN)g(m; aﬁdiag{q}) unigue spike in position 10 (marked as a bullet).

9(h; 07Tp11) P(@;A) P(R) P(A) P(Te)  (4)
As a consequence, Cheeg al's method tends to pro-
where diadq} denotes a diagonal matrix whose diagonal isduce unreliable estimated values, as shown in Fig. 2. The
g, 9(;R) the centered Gaussian pdf of covarialiteand+x  same IR is adopted here whiteis the well-known Mendel’s

the convolution operator as defined in Eq. (1). test sequence [3]. The data are corrupted by a Gaussian noise
_ _ _ with 02 = 4 x 1075, corresponding to SNR- 12.81dB.

2.2 Classical Gibbs Sampling Non-informative conjugate prior laws on the parameters are

Chenget al’s Gibbs sampler proceeds along Tab. 1. adopted:

0?~1G(1,1), o2 ~IG(1,1), A~ Be(L1).
@ Lety=(q,z). Foreach=1....M,

@) drawqi(k“) \ygl-(itll)7yi(f1-|\/|ah(k>a ék>7A(k)7z Initialization of the Markov chait®® is done according to:
k+1),  (k+1) (K k+1 K
(b) drawx "V [y 4, oY AW, 0 2 ol =102 q9 =0, h = *”iﬂ”lam_ 11), A© — 0.1,

@ drawh&D | gD o,ik), W 2

® drawaék”) |2l D) plrD) The three estimation results in Fig. 2 are obtained from the

same simulated data, and the same initialization, the only

® draw A (k1) ‘q(kJrl) difference being the random seed value. 1000 samples are
(K1) | 4 (ko1 produced for each Markov chain and the last 250 are aver-
(® draway, Ih( +1) aged to compute the estimation. Substantial variatiors exi

from one estimated result to the other, especially in the-num
Table 1. Chenget al’s Gibbs sampler (see [1] forimplemen- ber and the positions of spikes Actually, it can be checked
tation details). that each sequendg '} tends to become constant for very
long period of time, without fully exploring the state space
The five simulation steps are iterated until convergencédt should be stressed that these results are typieal,not
towards the posterior distribution, a@lis finally built ac- ~ Selected on purpose. _ _
cording to (3). This scheme presents several drawbacks de- The inefficiency of Chengt al's Gibbs sampling has al-
spite its simplicity. Labat and Idier [7] have already peit reéady been noticed by Bourguignenal.[2]. Their solution
out that time-shift ambiguities could lead to unreliablé-es involves proposals to shift several adjacent BG components
mates, depending on the initialization lof Here, we rather Very similar to the idea introduced by Chi and Mendel [10] in
focus on the fact that Step 1 exp|0res the state spa@ mD the context of deterministic pOS_terIor likelihood maximniz )
with a low efficiency. More precisely, the correspondingly tion. Our approach, however, aims to tackle the problem in-
sampled chains hardly escape from local maximizers of théirectly by marginalizing the amplitudes out of the target
posterior likelihood, due to highly dependent consecutivd?osterior distribution, and by so doing releases the Markov
samples. Fig. 1 illustrates this phenomenon, in which simuchain from local maxima of the likelihood.

lation data are generated from a single spike, convolveld wit
the IR defined by 3. TOWARDS A MORE EFFICIENT SAMPLER

3.1 Partial marginalization of x

The motivation to excluder from the Gibbs sampler is

and plotted on Fig. 2(b). A suboptimal configuration is cho-t"\_’OfOId' Firstly, the determination of conditional on(®, )

sen as the initial state. The chain takes several hundreds ¥fth © = (g, h, 0¢, 0h, A) is a linear estimation, easy to solve
iterations to visit the optimal configuration for the firsng.  afterwards. Secondly, a Gibbs sampler witf®| z) as its

hy = cos( (i - 10)%) exp(—[0.225-2*%) i =0,...,20
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02 . o @ drawg ™ | pk+D)
0.15
0.1
T I { [ ® 01 Table 2. The proposed Gibbs-type sampler.
G’ ? . o I, | 0.05
IS a .
-0.1 ~0.05 integrated out. Subsect. 3.3 provides an efficient way to im-
' plement step 1. On the other hand, in step)nly plays
-0.2 ° o 01 o the role of an auxiliary quantity, since it does not belong to
50 100 150 200 250 300 c 10 15 20 the Markov chain anymore. Steps 2(b), (c) are structurally
02 identical to steps 2, 3 in Tab. 1. In order to justify that the
4 ° 015 ;vampling scheme of Tab. 2 is mathematically valid, we let
01l o 51 © = (q,h’,0},0n,A) and check th@variant conditioni.e.,
o T o © that
c’ T ? 0.05
N [ k,0118.2)p(®])dhdo = p@12)  6)
-0.1 ~0.05 h,0¢
02 -0.1 holds for step 2, wher@ and k» denote the invariant tar-
hd hd get distribution and the transition kernel correspondintie
50 100 150 200250 300 5 1015 20 gtepn 2, respectively. We actually have
(a) estimation ofe (b) estimation ofh,

I A _
Fig. 2. Three different solutions of Chereg al’s method KZ(}f 10:|©,2) =
(under the improved version of [7]), obtained by changing / S Bz O\h o lz.0\o' 2)dz. (6
the random seed value only. The actual values are marked as wp(:c| Z)p(R[2,0\h, 2) p(0¢ |2, O\ 0, z)dz. (6)

bullets. We emphasize that Eq. (6) is not obtained by Monte Carlo

integration. It is rather the exact expression qf the _tltimsi
target distribution is likely to be more efficient than Cheatg  kernel of steps 2 to update the pah, oe} while x is no
al.’s sampler, particularly w.r.t. to the Bernoulli sequemgce longer retained in the chain. It follows that the left hanldsi
Theoretical foundations are available in [11] and [5, Chap®f EQ. (5) reads
ter 6.7] regarding the convergence rate of the so caltegd . _ _ _
lapsedGibbs sampler, that converges to the marginalized dis-| p(z,0|z)p(h’|x,0\h, 2)p(0; | 2,0\ 0¢, 2)dhdoeda
tribution p(©] z) = [ p(©] z)dx by analytically integrating _ _ _
x out of the scheme. According to [5, Chapter 6.7], the col- = /p(zc,e\h\z)p(h’\m,e\h,z)p(a;|a:,e’\a;,z)dagdm
lapsed Gibbs sampler produces a substantial gain in terms of
convergence rate if the integrated variables form highly de — [ p(p/ z ©\h|2)p(0.|z,@\0., z)docdx
pendent pairs with others in the Markov chain (see also [12]
and references therein). This is exactly the case of the pair_/ U, I Y A
{z, q} in the spike train deconvolution problem. = | P(,00\0¢ | 2)p(T | 2,0\, z)d>

3.2 Proposed Gibbs-type sampler = /9(5’379/ |z)dz = p(&|z).

Unfortunately, marginalizing leads to practical difficulties. |; is thus proven that the partial marginalization techmiqu

In particular, the conditional sampling &f given ©\h be- 5 pe applied to generate a Markov ch&®®} that con-
comes extremely difficult wher: is integrated out, since . S o~
verges to its equilibrium distributiop(©| z).

p(h|q,0n,0¢,2) is a multivariate, non Gaussian law with . . .
a complex structure. Instead of a plain Gibbs sampler on , 10 compare with the example of Fig. 1, our Gibbs-type
cheme escapes from a local maximum configuration within

O, the sampling scheme of Tab. 2 is proposed to circumventy 4cceptable number of iterations, as Fig. 3 illustratée. T
the direct conditional sampling @, o¢ € ©. The four steps  real configuration is reached after 20 iterations. Moregter
are iterated until convergence towards the posterioribistr  js observed from the configurations obtained at the 18th and
tion p(©] z). Compared with the classical sampler, the mainl9th iterations that our scheme is able to radically modtiéy t
difference appears in step 1, whetehas been analytically amplitude vector in one single step.
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Fig. 3. Sampled BG sequences obtained by our Gibbs-type ~ 1
scheme in the example of Fig. 1. The Markov chain escapes G =

rapidly the initial configuration neighborhood.

Finally, it is worthwhile to mention that an efficient sam-
pler should meet the two conflicting criteria [5, Chapter 7]:

e drawing each component conditional on others should be

computationally simple (complexity per iteration);

Further simplifications are also introduced in [4] by ex-

pI0|t|ng the sparse nature & and then applying the matrix
inversion lemma. Noticing that the rank Bfdiag{q}H" is

only N, B takes the alternate forB = UGG +1, where
G =HD is full rank, D being made of the nonzero columns

of diag{q}. Then, we havéB 1 =1 — uGC 1G! where
C= UG!G +TisNex Ne. Thus onIyC 1 needs to be stored
and updated instead &% which amounts ta7(N2) oper-
ations instead o#’(N?). In the case of adding a pulsedt
the formula for the update (fﬁi’l is

E14bEB b ]

bt ’fi—l

(7)

whereb = —u7*Cy'GLhi. On the other hand, it can be
shown thatf (1— qi) — f(q;i) takes the following form:

f(1—q)—f(g)=
log(87) — uE to;2(='By hi)? +2&Iog()\1—1) ®)

e the induced Markov chain should converge reasonabl};vhere

fast to its equilibrium law (number of iterations).

The next section deals with the issue of the complexity per
iteration, whereas the overall computational costs are-com

pared in Sect. 4 using simulation tests.

3.3 Marginal posterior distribution

T =&+ lhill” — 12 RoGbhi 2
2'Bythi = 2'hi — U(RoGhz) (RoGhhi ).

Last but not least, the computation and memory require-

In this subsection, an efficient implementation of step 1 ofments can be still lowered, by updating and storing the upper
Tab. 2 is proposed, inspired from the recursive method in [4]r|angularChoIeskyfactorR of C1 mstead ofC1 Since

to evaluatep(qi = 0, 1|O\q., ) sequentially. While the lat-

ter is based on the storage and update dRANe = 5; )

(z]©, z) is Gaussian with covarlan((é , its Cholesky fac-
tor allows to solve step 2(a) it7 (N2) operat|ons instead of

matrix, we finally propose an even less burdensome strateg,y(N3). In the mean timeR can be updated i’(N2) by

based on the handling of its Cholesky factor only.

Let H denote thé\ x M Toeplitz matrix such that (1) also
readsz = Hx + €. Then, the conditional posterior distribu-

tion of g; takes the following form:

N L A \9
p(a1®\ai=) 0 B| 2exp(~ 325 12) (A1)
Oexp(—f(a)/2)
where
B = Hdiag{q}H' + oIy,
f(q) = 2'B 1z +log|B| + 2qilog(1/A —1).
After normalization, the marginal probability of reads:
p(ci =1]@\a;, ) = (1+exp(—(f(0) - £(1))/2) "

which reduces to the evaluation &f0) — f(1), using the
following steps [4]:

=4+ uhitﬁalhi
B! = B! - uBy hiT 'hiBy*
B! = |Bg'|a7

where B = B/02, 4 = 0,2 and & = +1 depending on
whether 1 is added orIemovgdCﬁl hi denotes théth col-
umn of matrixH while B; andBy differ only atg;.

using aCholesky updatenethod, given that (7) also reads:
~ ~ = ~ = t
Cot 0, b7 || bVT

0 0 AVA B I VAVAT

Finally, step 1 of Tab. 2 can be summarized as follows:
e Evaluate p(g; = 0,1|®\q;;2) using (8), and sample

q**Y accordingly;

= Ce (kD) (K

e UpdateR if neededj.e, if g #0;

Cl=

4. SIMULATION RESULTS

A test scenario is designed to compare our proposed method
with that of Chenget al's sampler [1], in terms of robustness
w.r.t. different random initial conditions, while the tinsift
ambiguities are dealt with in both methods according to [7].

Brookset al’s convergence diagnostic [13] is based upon
parallel chains. Le{®j,j=1,...,mit=1,...,n} denote
samples fromm independent Markov chains of equal length
n, and®; (and®_) the local mean of th¢" chain ¢esp.the
global mean). Let the intra-chain and inter-chain variance
be defined as covariace matrix averages:

1 m n o .

Zi(q:’jt —®;)(Pj — ®).)

|=1t=

Vintra =

Vinter =
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Vinra @nd Viner allow to characterize the convergence be-  Most importantly, it should also be noted that 1000 itera-

havior. Brooks and Gelman [13] proposed to evaluate: tions of the Gibbs-type sampling take slightly less timentha
1 2000 iterations of the reference Gibbs sampler [7]. We are
R_""1 . (LH) AVL Viner) thus able to conclude that our Gibbs-type sampler achieves a
n m

far better compromise between the two criteria [5] than the
whereA () denotes the largest eigenvalue, and to wait untiflassical Gibbs sampler [1, 7]: in the displayed example, th
Ris close to oned.g.,R < 1.2). time required to reach convergence is reduced by a factor of
Let us reexamine the example of Fig. 2. To concentrat&® least 5.
on the convergence quality of the Bernoulli sequence, we

take @j; = qjt for 10 independent Markov chains. Fig. 4 REFERENCES
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