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ABSTRACT

We describe a new tracking algorithm for the direction of
arrival estimation problem where both the locations of the
sensors in the array and the directions of arrival are non-
stationary. The approach taken is Bayesian. The algo-
rithm assumes that the filtering distribution is approximately
Gaussian and maintains the mean and covariance of this ap-
proximation by fitting a quadratic surface to the log posterior
around the location where the log posterior is maximized. In
the case where the sensor locations are stationary, the algo-
rithm is shown to have similar performance to particle filter
based algorithms but at a reduced computational cost. In the
case where the sensor locations are non-stationary particle
filtering is unsuccessful and the new algorithm performs sig-
nificantly better than currently existing algorithms.

1. INTRODUCTION

Direction of arrival (DOA) estimation is the use of measure-
ments from a sensor array to estimate the direction of arrival
of incoming signals. It is a widely employed technique used
in sonar, acoustic localization, electronic surveillance, and
phased array radar, among others. However, most algorithms
assume that the directions of arrival are static and that the
locations of the sensors within the array are known. This re-
quires the array to be accurately calibrated, which may be
expensive and is not always possible. Even if an array has
been well calibrated it is possible for the sensors to drift over
time causing the calibration to lose accuracy. In this paper
we tackle the problem of online narrow band DOA estima-
tion, where the DOAs are non-stationary, and where the sen-
sor locations are also non-stationary and unknown.

The rest of this section gives an overview of the current
state of the art with regard to the non-stationary DOA es-
timation problem. Section 2 describes the model we work
with and introduces the notation for the rest of the paper.
Section 3 then describes a new filtering algorithm that has
been developed for the problem. This algorithm maintains a
Gaussian approximation to the filtering distribution. Section
4 provides results from applying the algorithm to some sim-
ulated data. Conclusions about the new algorithm are drawn
in section 5.

1.1 Background

Two commonly used tools for online estimation of dynamic
parameters are the Kalman filter and the particle filter. Both
have been employed to tackle the DOA estimation prob-
lem. Because the Kalman filter relies on the measurement
model being linear and Gaussian, all the approaches using
the Kalman filter require the data to be broken into windows

in which the DOAs are assumed to be stationary. In the con-
text of the Kalman filter, the data from each window is then
assumed to form a single ‘measurement’. This allows in-
formation from multiple data points to be combined, which
yields a much more Gaussian likelihood for the DOAs, al-
lowing the Kalman filter to be successfully applied. The ap-
proaches vary in how they calculate the mean of the ‘mea-
surement’ formed by each window. In [6] an iterative algo-
rithm for updating the signal subspace is used. The mean
of the measurement is then found by using an optimization
routine to find the DOAs which best fit the signal subspace.
In [3] a maximum likelihood approach is taken to finding the
mean of each ‘measurement’. For the covariance of the error,
both approaches use the Cramer Rao bound which is a the-
oretic lower bound on the actual covariance of the error. In
order to track rapidly varying parameters a short window will
be needed in order for the assumption of stationarity within
the window to be valid. However, this will mean that the
Gaussian approximation to the measurement error and the
Cramer Rao bound approximation to its covariance will be
poorer. Indeed, the Cramer Rao bound can be highly over-
optimistic about the error covariance even with quite large
windows, which leads to the Kalman filter placing too much
credence on the unreliable ‘measurements’. This limits the
performance of these approaches.

In order to avoid the need to make the approximations
required to run the Kalman filter, several particle filter ap-
proaches have been proposed [4], [2]. Because of the abil-
ity of particle filters to cope with non-linear non-Gaussian
measurement models such as the one involved in the DOA
model, only [4] takes the step of breaking the data into win-
dows. However, these approaches are very computationally
expensive. Furthermore, particle filters are known to struggle
when tracking slowly varying parameters, such as the slowly
drifting sensor locations.

There are very few approaches in the literature to simulta-
neous tracking of DOAs and non-stationary sensor locations.
Of the approaches mentioned above only [3] performs track-
ing of the sensor locations.

2. DIRECTION OF ARRIVAL MODEL

In this section we define a model for how the data is gener-
ated in the DOA estimation problem. There are two compo-
nents to the model. The first is the observation model, which
describes how the observed data is generated at a single time
instant. The second is the transition model which describes
how the parameters of the model evolve with time.
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2.1 Notation

We introduce the following notation.

• M is the number of sensors.

• yt is the vector of complex valued observations made at
each of the sensors in the array at time t. In other words

(yt ) j is the value observed by the jth sensor at time t.

• Xt is an M×2 matrix containing the positions of the sen-

sors at time t. So (Xt) ji is the location of the jth sensor in

the ith dimension.

• bt is a complex vector containing the amplitude and
phase offsets for each of the sensors at time t.

• θθθ t is a vector containing the angles of arrival for each of
the sources at time t.

• θ̇θθ t is a vector containing the rate of change of θθθ t .

• st is the vector containing the complex amplitudes of
each of the sources at time t.

• δδδ t is a vector containing the standard deviations of the
distributions of the source amplitudes at time t.

• αααt = logδδδ t . This will be needed for defining the transi-
tion model.

• ν is the wave number of the narrowband signals that are
being measured. In other words ν = (2πω0)/c where
ω0 is the central frequency of the signals and c is their
propagation velocity.

• σ is the standard deviation of the sensor noise.

• φφφ t is a vector containing the concatenation of the para-
meters that we wish to track. This will always contain

θθθ t , θ̇θθ t and αααt , and in the case where we wish to track the
sensor locations it will contain Xt as well.

2.2 Observation model

We use the standard DOA estimation model. This models the
values of the narrow-band signals as complex values which
represent the phase and the amplitude of the signals. This
means that the observed signal is modelled as

yt = Dtst + ξξξ t

where ξξξ t is the additive noise assumed to be zero-mean com-

plex Gaussian with covariance σ2I. Dt is a matrix of phase
shifts which represent the time delays across the sensors due
to the angle of arrival of the incoming wave. It is given by

(Dt) jk = (bt) j exp(i2πω0Ψ jk)

Ψ jk = (X j1 −X11)sinθk − (X j2 −X12)cosθk.

The subscript t has been omitted from the last equation for
notational simplicity.

2.2.1 Priors

We place a complex Gaussian prior distribution on the values
of the source amplitudes:

p(st) ∼ CG (0,Kt)

where C G (µ ,Σ) is used to denote a complex Gaussian dis-
tribution with mean µ and covariance Σ. We take Kt to have
the form:

Kt = diag(δδδ 2
t )

where diag(vvv) is the diagonal matrix formed by placing the
elements of vvv along the diagonal.

Since st is Gaussian it can easily be marginalized out of
the likelihood for the observation model leaving

yt ∼ CG (0,Wt) , (1)

where Wt = DtKtD
†
t + σ2I.

2.3 Transition model

Both the parameters relating to the sources and to the sensors
evolve over time. Here we define transition models for how
the parameters evolve from one time instant to the next.

The angles of arrival are modelled by a constant velocity
model. So

[

θθθ t+1

θ̇θθ t+1

]

∼ N

([

θθθ t + θ̇θθ t

θ̇θθ t

]

,qθ Σθ

)

.

In our experiments we use

Σθ =

(

1
3
I 1

2
I

1
2
I I

)

,

which is based on the standard structure for the innovation
covariance for a constant velocity model. qθ is a parameter
that must be chosen so that the model most accurately reflects
the expected dynamics of the DOAs.

In order to form a transition model for the source ampli-
tude standard deviations we take the same approach as [1].
We let ααα t follow a Gaussian random walk rather than defin-
ing a transition model on δδδ t itself. So

ααα t+1 ∼ N(ααα t ,qαI),

where qα is a parameter that can be chosen according to the
expected rate of change of ααα .

The sensor locations are also modelled as following a
Gaussian random walk. So

(Xt+1) ji ∼ N ((Xt) ji,qX) ,

where qX is a parameter that can be chosen according to the
expected rate of change of the sensor locations.

Note that the transition model for the parameters is en-
tirely linear-Gaussian. For notational convenience we write

φφφ t+1 ∼ N(Aφφφ t ,Q), (2)

where A and Q can be derived from the transition models for
the individual components of φφφ t .

3. ALGORITHM

In this section we propose a new filtering algorithm for use
with the model described above. The Extended Kalman Fil-
ter (EKF) is often applied to the problem of estimating non-
stationary parameters, when the observation model is non-
linear. The EKF operates by maintaining a Gaussian approx-
imation to the filtering distribution even though the true fil-
tering distribution is non-Gaussian. Due to the nature of the
non-linearity of our model, the EKF cannot be applied. So in
this section we present a new algorithmic approach for main-
taining a Gaussian approximation to the filtering distribution.
The approach taken to obtain the approximation is the same
as that taken to obtain the Gaussian approximation that is
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used by the Laplacian approximation of integrals. That is,
the peak of the distribution to be approximated is found and
taken as the mean of the Gaussian approximation. Then the
Hessian of the negative log of the distribution is calculated
at its peak and this is taken as the inverse covariance of the
approximation.

3.1 Recursive Approximation of Filtering Distribution

Like the EKF, our algorithm recursively calculates an ap-
proximation to the filtering distribution, p(φφφ t |y1:t), where
y1:t denotes all the data observed up to and including time
t. The approximation at time t is based on an update of
the approximation at time t − 1. So here we present an ap-
proximation to p(φφφ t |y1:t) in terms of the approximation to
p(φφφ t−1|y1:t−1). Let mt and Ct be the mean and covariance
of the Gaussian approximation to p(φφφ t |y1:t), which we refer
to as the filtering parameters. Let p̃(φφφ t |mt ,Ct) represent the
Gaussian approximation to p(φφφ t |y1:t). Then

p(φφφ t |y1:t)

∝ p(yt |φφφ t)p(φφφ t |y1:t−1)

= p(yt |φφφ t)
∫

p(φφφ t |φφφ t−1)p(φφφ t−1|y1:t−1)dφφφ t−1

≈ p(yt |φφφ t)
∫

p(φφφ t |φφφ t−1)p̃(φφφ t−1|mt−1,Ct−1)dφφφ t−1

It is useful to define

p̃(φφφ t |mt−1,Ct−1)

=

∫

p(φφφ t |φφφ t−1)p̃(φφφ t−1|mt−1,Ct−1)dφφφ t−1

=
exp(− 1

2
(φφφ t −Amt−1)

TR−1
t−1(φφφ t −Amt−1))

(2π)
n
2 |Rt−1|

1
2

Where Rt−1 = ACt−1AT+Q and n is the dimension of φφφ t . We
now define ft(φφφ t) to be the negative log of our approximation
to the filtering distribution. So

ft(φφφ t)

= − log p(yt |φφφ t)− log p̃(φφφ t |mt−1,Ct−1)

= log(πM|Wt |)+yT

t W−1
t yt + log((2π)

n
2 |Rt−1|

1
2 )

+ 1
2
(φφφ t −Amt−1)

TR−1
t−1(φφφ t −Amt−1).

Note that while such a recursive approximation to the filter-
ing distribution has the potential for errors to accumulate in
such as way that the algorithm diverges, this is no more the
case than for the EKF.

3.2 Finding the Filtering Parameters

Now that we can evaluate an approximation to the filtering
distribution we are in a position to calculate the parameters
of a Gaussian approximation to the filtering distribution. The
mean, mt , is taken as the minimum of ft . We apply Newton’s
method in order to find this minimum. That is, we use the
iterative scheme

φφφ i+1
t = φφφ i

t − γH−1

φφφ i
t

∇ f (φφφ i
t) (3)

where φφφ i
t is the value at the ith iteration towards the mini-

mum. Hφφφ i
t

is the Hessian of ft at φφφ i
t . The values of the deriv-

ative of ft are given in appendix A. A value of 1 is used for

γ provided that it yields a reduction in ft . If this is not the
case then γ is reduced until such a reduction in ft is achieved.
This can be done simply by repeatedly halving γ , or more ef-
ficiently by using the line search algorithm described in [5].
We are guaranteed to find some γ > 0 such that a reduction
in ft is achieved, because the gradient of ft in the direction
of search is initially negative.

While this sounds like a potentially computationally ex-
pensive procedure, in practice this turns out not to be the
case. First, the procedure is initialized from Amt−1, which
is usually a very good initial estimate of the minimum. This
also makes it unlikely that the algorithm will fall into a lo-
cal minimum. Second, the filtering distribution is in practice
close to being Gaussian. (If this were not the case then it
would not be appropriate to apply this algorithm.) Therefore,
the log of the filtering distribution is close to being quadratic,
which means that the optimization procedure converges very
rapidly to the solution. In the experiments reported below,
the procedure generally converged after just three steps.

Once this procedure has converged we set mt equal to the
converged value and Ct equal to H−1

mt
. The algorithm then

proceeds to the next observation. A pseudocode outline of
the complete algorithm is given in table 1.

3.3 Discussion of the Proposed Algorithm

In general it is not easy to tell in advance whether the
Gaussian approximation to the filtering distribution will be
valid. However, our experiments suggest that for the prob-
lem being addressed in this paper, the approximation is rea-
sonable. Note that the proposed algorithm needs to be ini-
tialized with both the number of sources that are present,
and a good estimate of the initial directions of arrival of the
sources. Without a good initialization, the assumption that
the filtering distribution is approximately Gaussian for the
initial stages, before much data has been observed, will not
be valid. While it is important to be able to address both these
aspects of the problem, it is beyond the scope of this paper to
do so.

While a particle filter could be applied to the problem it
would be computationally more costly. Also particle filters
are known to struggle with slowly varying parameters like
the sensor locations in our problem.

4. EXPERIMENTS

In this section we report the results of running the proposed
algorithm on some simulated data, in order to demonstrate
its performance. All the experiments are conducted with the
same ground truth for the directions of arrival, θ , and the
standard deviations of the source amplitudes, δ . The values
that these variables took are given in the equations below.

θ1(i) = −20 + 25cos

(

(π/8)(i−500)

2000

)

.

θ2(i) = 5.5−π
2000− i

2000
.

δ1(i) = 0.03 + 0.02cos

(

0.88(i+ 1000)π

1500

)

.

δ2(i) = 0.02−0.01sin

(

(i+ 1000)π

1500

)

.
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Set m0 and C0 equal to the mean and covariance of the
prior on φφφ0;
for t = 1 to T do

Set φφφ new
t = Amt−1;

repeat
Set γ = 1;

Set φφφold
t = φφφ new

t ;
repeat

Set φφφ new
t = φφφ old

t − γH−1

φφφold
t

∇ f (φφφ old
t );

Set γ = γ/2;

until ft (φφφ
new
t )− ft(φφφ

old
t ) < −10−4 ;

until |φφφnew
t −φφφ old

t | < 10−4 ;
Set mt = φφφ new

t ;

Set Ct = H−1
mt

;

end

Table 1: Pseudocode outlining the proposed new filtering al-
gorithm.

The data was generated for an array of five sensors arranged
to form a cross. The coordinates of the sensors were











−0.3 −0.3
0.3 −0.3
−0.3 0.3
0.3 0.3
0 0











.

The propagation velocity of the signals was taken to be
340ms−1 and the carrier frequency was 224Hz.

The values of the parameters used by the algorithm were
qθ = 10−10 and qα = 10−3. The value of σ used by the
algorithm was always taken to be the value that was used
when generating the data. The prior for the parameters to be
tracked was always centered on their true initial values with
a standard deviation of 10−3.

4.1 Stationary Sensor Locations

We begin by running some experiments in a scenario with
stationary sensor locations, where we assume that the sen-
sor locations are known. We investigate the effect that dif-
ferent levels of sensor noise have on the performance of the
algorithm. We also ran a particle filter as a benchmark for
the performance of the algorithm. The particle filter does
not make the approximation that the posterior distribution is
Gaussian and therefore, provided enough particles are used,
is the most accurate algorithm that is available. This accuracy
is achieved at the expense of computational cost. The particle
filter therefore serves as an upper bound on performance, and
can be used to assess how much impact the approximations
made by the new algorithm have on its performance.

Table 2 presents the accuracy achieved by the two algo-
rithms. It can be seen that the performance of the new al-
gorithm is not much below that of the particle filter, which
demonstrates that it is working well. The new algorithm ran
approximately eight times faster than the particle filter.

4.2 Non-stationary Sensor Locations

We now run some experiments to investigate the performance
of the algorithm in tracking non-stationary positions of the

σ
0.0006 0.00125 0.0025 0.005

New Filter 0.0021 0.0039 0.0072 0.0128
Particle Filter 0.0020 0.0038 0.0064 0.0109

Table 2: The average of the median absolute error for the es-
timate of the first DOA obtained across the length of the data
set at the different noise levels. The results are the average
over 50 data sets.

qX

σ static 10−6 10−5 10−4

0.0025 0.0072 0.0152 0.0202 0.0204
0.02 0.0575 0.0628 0.0844 0.3941

Table 3: The average of the median absolute error for the
estimate of the first DOA, obtained across the length of the
data set, with different values of qX and σ . The results are
the average over 50 data sets. The performance of the sta-
tic algorithm with stationary sensor locations is included for
comparison.

sensors, and we compare the performance with that of the
algorithm proposed in [3], which is the only approach to the
problem we are aware of in the literature. It should be noted
that in this case a particle filter cannot be successfully run on
the problem because the sensor locations evolve much more
slowly than the DOAs. Such a scenario causes particle filters
to fail. When generating the data all but the first and last sen-
sors were simulated according to the transition model used
by the algorithm. Arbitrary translations of the array make no
difference to the observed data, and arbitrary rotations of the
array can be accounted for by a rotation of all the directions
of arrival. Therefore, there is a fundamental translational and
rotational ambiguity when the positions of the sensors are
unknown. Fixing the locations of two of the sensors removes
this ambiguity, which is why this is done for our experiments.

Figure 1 plots an example of the true and estimated val-
ues of the x-coordinates for the three moving sensors. This
demonstrates that when the noise is reasonably low the algo-
rithm is capable of tracking the sensor locations even when
they are changing quite rapidly. Table 3 presents the accu-
racy obtained by the algorithm.

The behaviour of the algorithm is generally as one would
expect, with the performance degrading as the rate at which
the sensors drift or as the sensor noise increases. In general
the algorithm works well and the effect of the moving sensor
locations is well mitigated so that its impact on the estimate
of the directions of arrival is not too severe. However, in the
hardest case with σ = 0.02 and qX = 10−4 the algorithm fails
to provide reliable information about the directions of arrival.

4.2.1 Comparison with Goldberg’s Algorithm

The algorithm proposed by Goldberg in [3] was run on the
same data as the new algorithm in order to benchmark its
performance. It was run with window lengths 10, 50 and 100.
The same transition model was used but it now describes the
transition from one window to the next, rather than one time
instant to the next; therefore the covariance matrix for the
transition model was multiplied by the window length.

For the most benign case with σ = 0.0025 and qX =
10−6, the median value of the median absolute error in the es-
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Figure 1: An example of the true and estimated x-coordinates
of the three moving sensors. It is difficult to distinguish the
true and estimated values on the plot as the two are so close.
This plot is taken from the experiment that had the median
RMSE of the 50 experiments performed with σ = 0.0025
and qX = 10−4.

timate of the first DOA was 0.10, 0.17 and 0.15 respectively
for the three different window lengths. The corresponding
value for our new algorithm was 0.01, so it can be seen that
it performs significantly better.

5. CONCLUSIONS

We have proposed a new tracking algorithm for the problem
of non-stationary narrow band direction of arrival estimation.
The algorithm takes a fully Bayesian approach to the non-
linear problem without the need for employing a particle fil-
ter. It is significantly computationally less expensive than a
particle filter but results in comparable performance.

The algorithm has also been applied to the case where the
locations of the sensors in the array are unknown and non-
stationary. As long as the noise level is not too high and the
sensors are not moving too quickly, the algorithm performs
well, successfully tracking the sensor locations and yielding
good estimates of the directions of arrival. The new algo-
rithm has been shown to significantly outperform the only
known approach to this problem in the literature.

The algorithm that has been developed has a very general
form and has the potential to be applied to any non-linear
non-Gaussian online estimation problem where the EKF or
UKF cannot be successfully applied. An example of such a
problem would be that of online non-stationary independent
component analysis.
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A. DERIVATIVES

In this appendix we provide the derivatives of ft :

∂

∂φφφ t

ft(φφφ t) = −
∂

∂φφφ t

log p(yt |φφφ t)

−
∂

∂φφφ t

log p̃(φφφ t |mt−1,Ct−1).

Now

∂

∂φφφ t

log p̃(φφφ t |mt−1,Ct−1) = −R−1
t Amt−1.

[

∂

∂θθθ t

log p(yt |φφφ t)

]

p

= 2
[

KtD
†
t W−1

t (yty
†
t W−1

t − I)Mt

]

pp
.

[

∂

∂ααα t

log p(yt |φφφ t)

]

p

= 2
[

GtD
†
t W−1

t (yty
†
t W−1

t − I)DtGt

]

pp
.

[

∂

∂Xt

log p(yt |φφφ t)

]

p1

= 2
[

(P1
t KtD

†
t )W

−1
t (yty

†
t W−1

t − I)
]

pp
.

[

∂

∂Xt

log p(yt |φφφ t)

]

p2

= 2
[

(P2
t KtD

†
t )W

−1
t (yty

†
t W−1

t − I)
]

pp
.

where

P1
i j = bi exp(iνΨi j)iν sinθ j.

P2
i j = −bi exp(iνΨi j)iν cosθ j.

Mip = bi exp(iνΨip)iνg(Xi,θp).

g(Xi,θp) = (Xi1 −X11)cosθp +(Xi2 −X12)sinθp.

G = diag(ααα).

Note that in the definitions above the subscript t has been
dropped to simplify the notation.

Together this provides everything needed to calculate the
gradient of ft . The Hessian can be calculated numerically
using these calculations for the first derivative.
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