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ABSTRACT

The pseudo maximum likelihood estimator allows one to estimate

the unknown parameters of Brown’s model for altimeter wave-

forms. However, the optimality of this estimator, for instance in

terms of minimizing the mean square errors of the unknown para-

meters is not guarantied. Thus it is not clear whether there is some

space for developing new estimators for the unknown parameters

of altimetric signals. This paper derives the Cramér-Rao lower

bounds of the parameters associated to Brown’s model. These

bounds provide the minimum variances of any unbiased estima-

tor of these parameters, i.e. a reference in terms of estimation er-

ror. A comparison between the mean square errors of the standard

estimators and Cramér-Rao bounds allows one to evaluate the po-

tential gain (in terms of estimation variance) that could be achieved

with new estimation strategies.

1. PROBLEM STATEMENT AND DATA MODEL

Altimeters such as Poseidon-2 on Jason-1 and Poseidon-3 on Jason-

2 provide useful information regarding the sea surface around the

Earth. Altimeters send pulses which are frequency linear modu-

lated and transmitted toward the ocean surface at a given pulse rep-

etition frequency. After reflection on the sea surface, these pulses

are backscattered and received by the altimeter. The formation of

the resulting altimeter echoes (also called return powers) is illus-

trated in figure 1 extracted from [1]. Three distinct regions can be

highlighted in the received altimeter signal: the first region (“ther-

mal noise only” region) corresponds to the thermal noise generated

by the altimeter before any return of the transmitted signal from

the ocean surface (figure 1-a). The second part called the “leading

edge” region contains all information about the ocean surface para-

meter and the altimeter height (figure 1-b and -c). Finally, the last

part of the received signal referred to as a ”trailing edge” region

(figure 1-d) is due to return power from points outside the pulse-

limited circle. Altimeter signals can be used to estimate many in-

teresting ocean parameters, such as the significant wave height or

the range, using a retracking algorithm [2]. This estimation as-

sumes the received altimeter waveform can be modeled accurately

by Brown’s model [3], [4]. A simplified formulation of Brown’s

model assumes that the received altimeter waveform is parame-

terized by three parameters: the amplitude Pu, the epoch τ and

the significant wave height H . The resulting altimeter waveform

denoted as x(t) can be written
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Fig. 1. Construction of a radar altimeter waveform.
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dz stands for the Gaussian error function, c

denotes the light speed, α and σ2
p are two known parameters de-

pending on the satellite and Pn is the instrument thermal noise.

The retracking algorithm estimates the thermal noise from the first

data samples and subtracts the estimate from (1). As a conse-

quence, the additive noise Pn can be removed from the model (1)

with very good approximation. The received signal x(t) is sam-

pled with the sampling period Ts, yielding

xk =
Pu
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where xk = x(kTs) and the following notations have been used

u = kTs − ασ2
p, v = −αkTs +

α2σ2
p

2
,

ρ =
α

4c2
, µ =

1

4c2
, δ =

α2

8c2
.

Figure 2 shows the waveform model and the influence of the three

parameters Pu, τ and H . The epoch, τ corresponds to the cen-

tral point of the “leading edge”. The amplitude, Pu represents the

amplitude of the waveform, while the significant wave height H
is related to the slope of the “leading edge”. Altimeter data are

corrupted by multiplicative speckle noise. In order to reduce the

influence of this noise affecting each individual echo, a sequence
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Fig. 2. Evolution of Brown’s model as a function of the different

parameters.

of L consecutive echoes are averaged on-board. Assuming pulse-

to-pulse statistical independence [5], the resulting speckle noise

denoted as nk is distributed according to a gamma distribution

whose shape and scale parameters equal the number of looks L
(i.e. the number of incoherent summations of consecutive echoes).

The observed waveforms can finally be written as

yk = xknk, k = 0, ..., N − 1. (3)

Assuming independence between the observed altimeter samples,

the joint distribution of y = (y0, ..., yN−1) is

f (y; θ) =
LNL

[Γ (L)]N

N−1Y
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k
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where θ = (Pu, τ, H) is the parameter vector of interest. The

maximum likelihood estimator (MLE) of θ is classically obtained

by differentiating the likelihood (4) with respect to the unknown

parameters Pu, τ and H [6]. Due to the absence of closed-form

expressions for the MLE of θ, pseudo-MLE solutions have been

proposed in the literature [2]. The aim of this paper is to de-

rive the Cramér-Rao bounds (CRB) of Brown’s model parame-

ters and to compare the mean square errors (MSEs) of the pseudo

MLEs to these bounds. This comparison will help us to under-

stand the potential gain in estimation performance we might obtain

with other estimation algorithms than the classical pseudo-MLE.

Indeed, when the MSE of an estimated parameter is close to its

corresponding CRB, it is clearly not interesting to look for other

estimation algorithms.

The paper is organized as follows: Section 2 details the main

steps required to derive the CRBs of the three parameters defin-

ing Brown’s model. Section 3 illustrates the behavior of these

CRBs when key parameters are varying. A comparison between

these bounds and the MSEs of the pseudo-MLEs is also presented.

Section 4 generalizes the previous results to a more sophisticated

model involving a fourth parameter referred to as off-nadir point-

ing angle. Conclusions are reported in Section 5.

2. CRAMÉR-RAO BOUNDS

The likelihood defined in (4) is denoted as f for brevity. The Fisher

information matrix (FIM) for the unknown parameter vector θ is

given by

F = −E
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where E [.] stands for the mathematical expectation. The variance

of any unbiased estimator of Pu, τ and H is bounded below by

its corresponding Cramér-Rao bound (CRB) which is obtained by

inverting the FIM (5). The unknown parameters Pu, τ, H are de-

noted by θ1, θ2, θ3. Any unbiased estimator of θ1 denoted by bθ1

satisfies the following inequality
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where det(F ) is the determinant of F . The right hand side of (6)

is the CRB of θ1. Of course, similar results are obtained for the

other parameters θ2 and θ3 by exchanging indices. Determining

the CRB of θ1 requires to compute the expectations of the second

order derivatives of f . It is straightforward to show that
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for i, j = 1, 2, 3, (θi, θj) ∈ {Pu, τ, H}2
. The FIM elements of

(5) can be computed using straightforward computations (details

are available in the Appendix). As a result, the CRBs of the al-

timeter parameters Pu, τ and H can be expressed as
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where Gk and Mk have been defined in the Appendix in (12),
P
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Two important observations can be made. First, the functions Gk

and Mk defined in (12) do not depend on Pu (these terms only de-

pend on the two other parameters τ and H). Therefore, the CRBs

of τ and H are independent of the amplitude parameter Pu. This

result can be explained by noting that the altimeter waveform xk

is corrupted by a multiplicative speckle noise.

A similar reasoning can be used to show that the CRB of Pu is a

function of P 2
u . Second, all CRBs are inversely proportional to the

number of looks L. The behavior of the three CRBs as a function

of τ and H is not easy to analyze using (8) because Gk and Mk

have too complex expressions (see (12)). This behavior will be

illustrated in the next section.



3. NUMERICAL ILLUSTRATIONS

This section provides numerical results illustrating the CRB prop-

erties. Note that we do not study the influence of the number of

samples N on these bounds since this parameter is fixed during the

acquisition process. Figure 3 shows that the parameter CRBs are

decreasing functions of the number of looks L. This result is not

surprising since the number of looks is directly related to the noise

level of the signal. Note that L = 90 in the Ku band for Poseidon-

2 whereas L = 15 in the C band. This figure can also be used to

derive the MSEs and the CRBs of the epoch in meters: in this case,

the epoch corresponds to the distance between the satellite and the

sea surface and it is denoted as d. Indeed, the epoch in meters

is related to the epoch in seconds according to d = τc/2, hence,

MSE
�bd� = MSE (bτ) c2/4 (where bd and bτ denote estimates of d

and τ ). As an example, for L = 90, we have MSE (bτ) ≈ −184dB

yielding

r
MSE

�bd� ≈ 9.8cm. A similar computation leads top
CRB (d) ≈ 1.9cm. Thus, the standard deviation of an opti-

mal distance estimator is five times less than that of the MLE (i.e.

corresponding to a gain of 8cm). Figures 4, 5 and 6 display the

CRBs of the three parameters versus the different parameters. As

already stated, Fig. 4 confirms that the CRBs of τ and H do not

depend on amplitude values although the CRB of Pu is a quadratic

function of this parameter. Figure 5 illustrates the slight influence

of the epoch value on all CRBs. It can also be seen on figure 6 that

the CRB for the estimation of the significant wave height, H , in-

creases when H increases. These figures also compare the perfor-

mance of the pseudo-MLE derived in [2] with the optimal MSEs

provided by the CRBs. Note that the MSEs have been computed

with 1000 Monte Carlo runs for synthetic signals defined by (3).

It can be seen that the pseudo-MLE of the amplitude Pu is close to

be optimal since its MSE is very close to the corresponding CRB.

However, there is clearly some space for improving the estimation

of the two other parameters τ and H .

4. BROWN’S MODEL WITH FOUR PARAMETERS

A more sophisticated and accurate model of the altimeter wave-

forms was proposed in [4] by introducing a fourth parameter in

(2). The new parameter is the off-nadir pointing angle (denoted

by ξ) which is mainly responsible for a slope change in the “trail-

ing edge”, corresponding to samples greater than 50 or 60 in Fig.

2. Several studies have shown that estimating this parameter is

useful for the retracking algorithm [7], particularly in presence of

blooms or rain cells. Of course, this fourth parameter induces some

changes in Brown’s model defined in (2). More precisely, Pu and

α have to be modified as follows:

Pu → Pu exp

�
− 4

γ
sin2 ξ

�
,

α → α

�
cos (2ξ) − sin2 (2ξ)

γ

�
. (9)

The resulting CRBs of the four parameters can be derived, simi-

larly to the case of three parameters. The FIM is now defined as a

4 × 4 matrix, whose elements are

Fij = −E

�
∂2 ln f

∂θi∂θj

�
(10)

for i, j = 1, ..., 4 with θi ∈ {Pu, τ, H, ξ}. The analytical expres-

sions of all FIM elements can be derived using (7). Note that the

formulae given in the Appendix derived for three parameters can

also be used for four parameters after replacing α in (12) and (13)

by its new expression given in (9). Of course, this complicates sig-

nificantly the CRB expressions which are not given in this paper

for brevity (see [8] for details). However, the following comments

are appropriate: 1) the CRBs in the case of four parameters are

inversely proportional to the number of looks L (similarly to three

parameters), as shown in Fig. 7, 2) the CRBs of τ , H and ξ are

independent of Pu. The only bound which depends on Pu is the

CRB of Pu itself that is still a quadratic function of Pu. Figure 7

also illustrates the loss of efficiency resulting from the estimation

of four parameters instead of three. For example, for L = 90,

we have

r
MSE

�bd� ≈ 21.2cm and
p

CRB (d) ≈ 2.7cm to be

compared with the the results obtained before. The loss of estima-

tion accuracy for parameter Pu, when moving from three parame-

ters to four parameters, can be observed in Fig. 8. In particular,

the pseudo-MLE of Pu is no-longer close to optimal when four

parameters are used in Brown’s model. Figures 9 and 10 display

the CRBs for the four parameters as functions of the significant

wave height and the off-nadir pointing angle. The MSEs of the

pseudo-MLEs are also plotted in order to evaluate the estimation

performance. It is interesting to note the behavior of the differ-

ent CRBs are comparable to the three parameter case. However,

the MLE of Pu seems to be less accurate for large values of H
and/or ξ. This reinforces the idea that new estimators might be

investigated even for the amplitude parameter. Moreover, if the es-

timation of ξ seems to be independent of H (see Fig. 9), the MLE

does not behave quite well when ξ increases (see Fig. 10).
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5. CONCLUSIONS

This paper derived Cramér-Rao lower bounds for the parameters

of radar altimeter waveforms. These bounds have been obtained

by assuming the altimetric signals satisfy Brown’s model. A first

study was conducted for the simplified model parameterized by

the signal amplitude, the epoch and the significant wave height. A
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more accurate model including the off-nadir pointing angle as a

fourth parameter was then considered. The obtained bounds were

compared to the corresponding mean square errors of the pseudo

maximum likelihood estimates. The main conclusion is that there

is some space for improving the estimation of the epoch and the

significant wave height. Conversely, the amplitude estimator is

close to be optimal for the three parameter Brown’s model. A

significant loss of estimation performance was observed for the

amplitude when the four parameter model is investigated.

Perspectives include the development of new estimation strate-

gies for altimeter waveforms. The introduction of prior informa-

tion regarding the different altimetric parameters through a Bayesian

framework seems to be promising in this context [9]. Considering

estimation strategies appropriate to waveforms which have been

backscattered from non-oceanic surfaces (ices, deserts, ...) is also

very challenging.

6. APPENDIX

Denote as Fij the elements of the symmetric FIM. Equations (2)

and (7) allow to compute the expectations of all second order deriv-

atives:
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Note that the parameters Gk,τ,H and Mk,τ,H will be denoted as

Gk and Mk for brevity.

In the case four parameters are considered, we use the follow-

ing notations

Vk,τ,H,ξ = Ik,τ,H,ξ + BHJH,ξ

exp
�
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�
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The FIM elements related to the ξ parameter can then be computed

as follows

F14 = L
Pu

N−1P
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V 2
k,τ,H,ξ F34 = L H

4c2

N−1P
k=0

Mk,τ,H,ξVk,τ,H,ξ.

(14)

The other FIM elements Fij , (i, j) ∈ {1, 2, 3}2
have the same

expressions as in the three parameter case (11), except that α has

to be modified as given by (9).
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