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ABSTRACT

This paper introduces the concept of a complementary matching
pursuit for sparse approximation. The algorithm is analogous to
the classical matching pursuit but done in the row-space of the dic-
tionary matrix. A deeper analysis of the algorithm shows that the
residual error at any iteration may not be orthogonal to the imme-
diately selected atom, however, this brings about the possibility of
increasing the convergence speed and improving the sparsity of the
solution vector. This is validated through simulations with a random
dictionary created using the K-SVD algorithm.

1. INTRODUCTION

Consider the following system of equations:

Ax = b, (1)

where A is a matrix of dimension K×N , K < N , and b is a known
vector of dimension K. The columns of A are assumed to make a
redundant basis for the K-dimensional space. The problem here is
to find the unknown vector of coefficients x which has the minimum
number of nonzero elements and which satisfies the above system of
equations either exactly, or with some approximation error smaller
than a specified threshold. In approximation theory, this problem is
known as sparse approximation in a redundant basis. Referring to
the above system, the exact sparse approximation problem thus can
be posed as

min{‖x‖0 : Ax = b}, (2)

where the L0 norm denotes the number of non-zero elements. The
problem which allows some approximation error can be posed as

min{‖x‖0 : ‖Ax−b‖p ≤ δ}, (3)

for some δ ≥ 0. The norm p is usually 2, but could be 1 or ∞ as
well.

This problem arises in many areas of signal processing, such
as compression, denoising, indexing, signal recovery, etc., where
the goal is to express a known signal as a linear sum of the fewest
signals from a set of elementary signals. The elementary signals
typically have well-defined properties, and thus it is easier to ana-
lyze the specified signal in terms of them. Using the terminology of
sparse approximation, such elementary signals are called atoms and
the collection is called a dictionary.

The above problem is NP-hard [1]. Except for the exhaustive
combinatorial approach, there is no known method to find the ex-
act solution under general conditions on the matrix A. There are
basically two heuristic approaches in the literature which find ap-
proximate solutions with tractable complexity. One is called the
matching pursuit (MP), which is a greedy algorithm [2, 3]. The
other is known as the basis pursuit (BP), which relaxes the L0 norm
condition by the L1 norm and solves the problem through linear
programming [4, 5, 6]. BP algorithms can produce more accurate
solutions than the matching pursuit algorithms but require higher
complexity.

In this paper, we introduce the concept of a complementary
matching pursuit (CMP). The algorithm is similar to the classical
MP, but performed in the row-space of the dictionary matrix. Un-
like MP, this may result in residual vectors that are not orthogonal
to the immediately selected atoms. On the other hand, it chooses
the coefficients which are closer to the actual true coefficients. As
a result, the convergence speed and the sparsity are improved over
the MP algorithm. We also show that, under the orthogonality of
the rows of the dictionary matrix, the CMP is equivalent to the MP
algorithm.

The goal here is not to present an algorithm which performs
better than the state-of-the-art algorithms such as the orthogonal
matching pursuit (OMP) [3] and basis pursuit (BP) [4, 5, 6], but to
introduce a concept on par with the simplest pursuit algorithm. The
idea here is to show that the classical algorithm done in a subspace
of a higher dimensional space can have improved performance in
terms of convergence speed and sparsity of solution. The orthogo-
nal extension of the algorithm [7] is a suitable candidate to be com-
pared with the advanced techniques. Because of the page limitation,
we do not include this extension in this paper.

2. MATCHING PURSUIT (MP)

Matching pursuit [2] is an iterative greedy approach that selects the
atom having the highest correlation with the residual vector at each
iteration. Let αi, 1 ≤ i ≤ N , denote the ith atom with ‖αi‖2 =
1, ∀i. At the jth iteration, the algorithm finds

αopt
j = argmax

αi∈A

| < rj−1,αi > |, (4)

where A denotes the dictionary of atoms, < . > denotes the inner-
product operation, and rj−1 denotes the residual at the (j − 1)th

iteration with r0 = b. The inner product < rj−1,αopt
j > represents

the coefficient associated with the atom αopt
j . Let us denote it as cj .

The algorithm then updates the residual as

rj = rj−1 − cjα
opt
j . (5)

The approximation at the jth iteration is given as bj =∑j
k=1 ckαopt

k
with b0 = 0.

The algorithm terminates when the norm of the residual falls
below the desired approximation error bound, or when the number
of distinct atoms in the approximation equals the desired limit. No-

tice that the selected atoms αopt
j , j = 1,2,3, ..., may not be distinct

when j > 2. Hence the sparse solution vector is obtained by adding
up the coefficients cj ’s with respect to the same atom.

The matching pursuit algorithm is very simple. But because of
the sub-optimality [3], it suffers from slow convergence and poor
sparsity result. The orthogonal matching pursuit (OMP) presented
later in [3] removes this drawback by projecting the signal vector to
the subspace spanned by the atoms selected up to any iteration. In
the following, we present a simple modification of the MP which
improves these factors without requiring the orthogonal extension.
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Figure 1: Subspace representations of x2, x0, and x∗

3. COMPLEMENTARY MATCHING PURSUIT (CMP)

Consider the matrix A, whose columns are atoms. Since the
columns of A are assumed to make a redundant basis, its rows are
linearly independent. Thus the columns of AT span a K dimen-
sional subspace in the N -dimensional space. Let us denote this
subspace by SA. The orthogonal complement of this subspace has
dimension N −K. Let us denote this subspace by S∗

A. Let G de-
note the N × (N −K) matrix whose columns are orthogonal and
which span S∗

A. G could be derived through well-known matrix op-
erations such as QR factorization or Singular Value Decomposition

(SVD) of AT . Clearly, AG = 0K×(N−K).

Now consider the system of equations in Eqn.1. Let us assume
that the signal has an exact sparse representation and it is observed
without any additive noise. The minimum L2 norm solution to this
system of equation is the pseudo-inverse:

x2 = AT (AAT )−1
b.

Clearly, x2 lies in SA. The sparsest solution, denoted by x0,
can be expressed as

x0 = x2 +x
∗,

where x∗ is some nonzero vector. Since Ax0 = Ax2 = b, Ax∗ =
0K . Therefore x∗ lies in S∗

A. This is shown in Fig. 1. Now finding
x0 is equivalent to finding x∗.

Since x0 is sparse, there is a relation between the components
of x2 and x∗. ‖x0‖0 ≤ K (which follows from the redundancy of
the basis) implies that at least N −K components of x∗ have the
same magnitudes but opposite signs as the corresponding compo-

nents of x2
1.

Let us assume that these components of x∗ are somehow
known. Then the remaining components of x∗ can be determined
provided the rows of G having the same indices as these compo-
nents make a spanning set for the (N −K)-dimensional space. This
can be demonstrated as follows.

Let I denote the set of indices {1,2, . . . ,N}, and let IR denote
the subset of indices for which the components of x∗ and x2 are
equal in magnitude but opposite in sign. Let IE denote the comple-
mentary subset of indices, i.e., IE = I\IR . Let xR and xE denote
vectors containing the corresponding components of x∗, that is, xR

contains the components of x∗ with indices IR and xE contains
the remaining components. Let us partition G into GR and GE

similarly, i.e., GR contains the rows having indices IR and GE

contains the remaining rows.

Now, since x∗ lies in S∗
A, there is a unique (N − K)-

dimensional vector z0 such that

x
∗ = Gz0. (6)

1If any of these components of x2 is 0, the corresponding component of

x
∗ is also 0.

Using the above partitioning, we can write:

xR = GRz0, xE = GEz0.

If the rows of GR make a spanning set for the (N − K)-
dimensional space, the columns of GR are linearly independent.
Therefore, given xR, we can compute z0 using the pseudo-inverse
as

z0 = (GT
RGR)−1GT

RxR. (7)

Substituting this above, we get

xE = GE(GT
RGR)−1GT

RxR. (8)

This shows that xE can be recovered given xR. It is easy to see
from above that, for a sparse solution, the associated GR must be
full column-rank. Because, otherwise, we can have infinitely many
reconstructions for xE resulting in infinitely many sparse represen-
tations with the same set of atoms (atoms with indices IE). This
is a contradiction since the set of atoms in a sparse representation
must be linearly independent.

Using the above result, the exact solution can be obtained by
exhaustively searching over all possible combinations of t, N >
t ≥ N −K, components from the L2 norm solution x2. We can
assume that a given combination equals xR, and then compute z0
as in Eqn. 7 provided the corresponding GR is full column-rank.
Then we can compute x∗ as in Eqn. 6 and subtract it from x2 to
derive the sparse vector. The sparsest solution corresponds to the
combination where this subtraction results in the minimum number
of nonzero elements. This is similar to the known combinatorial
approach. An alternative approach is to follow a greedy pursuit
algorithm. But, before we describe the algorithm, let us first prove
the following result, which we will use subsequently.
Lemma: Consider an N ×M matrix Q, M < N , whose columns
are orthogonal with identical Euclidean norm l and which has non-
null rows with Euclidean norms less than l. Then any (N −1) rows
of Q span the M -dimensional space.

Proof: Let q denote any row of Q and let Qr denote the matrix
containing the remaining rows. Since Q is orthogonal with identical

column norms, QT Q = lIM , where IM denotes the identity matrix

of order M . Thus, qT q+QT
r Qr = lIM . Multiplying q on the left

side we get, qqT q+qQT
r Qr = lq. Denoting the product qQT

r by

qr , and simplifying, we get (l−qqT )−1qrQr = q. This proves
that q can be expressed as a linear sum of the rows of matrix Qr.
Since Q has rank M , there must be M linearly independent rows in
Qr and this proves the result.

We can now apply the above result to the matrix G. Let us as-

sume that G is derived through QR factorization or SVD of AT .

Then GT G = IN−K and the row norms of G are less than 1.
Therefore, any combination of N − 1 rows spans the (N −K)-
dimensional space. This result helps us to apply the matching pur-
suit in the complementary space.

3.1 A greedy algorithm

This algorithm is similar to the MP algorithm. At every iteration,
it identifies the atom that produces the smallest residual vector and
computes the corresponding coefficient. However, the residual vec-
tor is defined differently in this case. Instead of a K-dimensional
vector as in the case of MP, here it is an N -dimensional vector.

Let rj denote the residual at the jth iteration with initialization
r0 = x2. Let Ri denote the set of indices except the ith index,
i.e., Ri ≡ I/{i}. Let rj [Ri] denote the vector containing all the
elements of rj except the ith element. Similarly, let GRi

denote
the matrix containing all the rows of matrix G except the ith row.
At the jth iteration, the algorithm computes

e
i
j = rj−1 −G(GT

Ri
GRi

)−1GT
Ri

rj−1[Ri], 1 ≤ i ≤ N. (9)



The second term on the right computes the orthogonal vector in
S∗

A for the atom αi. Because of the result stated earlier, GRi
has

full column rank for any i, and therefore the above matrix inversion
operation is valid.

The optimal atom is found by minimizing the pth norm:

αopt
j = argmin

αi∈A

‖ei
j [Ri]‖p, (10)

where ei
j [Ri] denotes the vector ei

j without the ith component, and
p can be 1, 2, or ∞. If k denotes the index of the optimal atom, the
coefficient with respect to the optimal atom and the new residual
vector are computed as

cj = e
k
j [k] and rj = e

k
j �1k=0, (11)

where 1k=0 denotes a vector with all elements 1 except the kth ele-
ment, which is 0, and ’�’ denotes the element-wise multiplication.

The approximation at the jth iteration is given as bj =∑j
k=1 ckαopt

k
. Thus the approximation error at the jth iteration

is given as

εj = b−bj = b−

j∑

k=1

ckαopt
k

. (12)

Notice that, unlike the MP, here the approximation error is not
the same as the residual error. The algorithm terminates when the
norm of the approximation error falls below the desired error bound,
or when the number of distinct atoms in the approximation equals
the desired limit. The coefficients of the sparse solution vector are
derived by adding up the coefficients cj ’s with respect to the same
atom.

Also, notice that there is a zero element in the residual vector at
each iteration, which corresponds to the index of the optimal atom
in that iteration. Hence, what is minimized in (10) is actually the
norm of the residual. Obviously, if all the remaining elements of the
residual vector are zero, the algorithm terminates at that iteration.
Further, the residual vector at each iteration is orthogonal to the
columns of G. This can be proved easily as follows: Let k denote
the index of the optimal atom at the jth iteration. Then,

GT
rj = GT

Rk
e

k
j [Rk].

Using the expression from Eqn. 9, we get

GT
rj = GT

Rk
(rj−1[Rk]−GRk

(GT
Rk

GRk
)−1GT

Rk
rj−1[Rk ]) =0.

Therefore rj lies in the subspace SA, like x2. As a conse-
quence of this, in the (j +1)th iteration, the second term in Eqn. 9
will be equal to zero for the kth atom, and thus the residual will re-
main unchanged for that atom. This is similar to the orthogonality
of the residual vector to the immediately selected atom in the MP
algorithm.

4. CONVERGENCE OF CMP

It is well known that the MP algorithm is convergent [3]. This is
seen from the fact that the residual vector is orthogonally projected
onto the atoms that make a redundant basis, and thus the residual is
a decreasing function of the iteration number. The same argument
holds for the CMP as well.

Referring back to the expression in Eqn. 9,

rj [Rk ] = rj−1[Rk]−GRk
(GT

Rk
GRk

)−1GT
Rk

rj−1[Rk]

= (IN−K −GRk
(GT

Rk
GRk

)−1GT
Rk

)rj−1[Rk ].

This shows that the non-null part of the residual vector at the jth
iteration is actually the difference between rj−1[Rk] and its pro-
jection onto the subspace spanned by the columns of GRk

. Since
the atoms make a redundant basis, there is at least one atom for
which this projection is non-zero. This implies that rj is smaller
than rj−1 and thus the algorithm is guaranteed to converge.

We have shown that GRk
is full column-rank, i.e., it has rank

N −K. Thus the residual error lies in a (K −1)-dimensional sub-
space. This is also true for the MP since the residual error is the
difference between a K-dimensional vector and its projection on an
atom (column vector). However, in the case of CMP, the projection
being onto a subspace of dimension (N −K), the error may die out
faster with each iteration (faster convergence) than in the case of
MP. Compare this with the case of OMP [3] where the error lies in
a subspace whose dimension decreases by 1 at each iteration.

5. CMP VS MP

From the above explanation, it seems that the CMP must be some-
how related to the MP. In the following we derive the expressions
for the coefficient of the optimal atom and the residual energy af-
ter the first iteration and relate them to those in MP. The coefficient
and the residual energy after the jth iteration can be obtained by
replacing x2 by the residual vector rj−1 .

At the first iteration, the nonzero components of the residual
error with respect to the ith atom is given as

e
i
1[Ri] = (IN−K −GRi

(GT
Ri

GRi
)−1GT

Ri
)x2[Ri]. (13)

Therefore

‖ei
1[Ri]‖

2 = x
T
2 [Ri](IN−K −GRi

(GT
Ri

GRi
)−1GT

Ri
)x2[Ri]. (14)

Let gi denote the ith row of G. Since GT G = IN−K , GT
Ri

GRi
=

IN−K −gT
i gi. Using the matrix inversion lemma [8], and the or-

thogonality between the columns of G and x2, the above expression
can be simplified as

‖ei
1[Ri]‖

2 = ‖x2‖
2 −

(x2[i])
2

1−gig
T
i

(15)

Now, using the orthogonality between G and AT , it can be proved

that 1−gig
T
i = αT

i (AAT )−1αi. Therefore

‖ei
1[Ri]‖

2 = ‖x2‖
2 −

(x2[i])
2

αT
i (AAT )−1αi

. (16)

If the kth atom produces the minimum error, then the residual en-
ergy is

‖r1‖
2 = ‖x2‖

2 −
(x2[k])2

αT
k

(AAT )−1αk

. (17)

The coefficient associated with the kth atom is

c1 = e
k
1 [k] = x2[k]−gk(GT

Rk
GRk

)−1GT
Rk

x2[Rk]. (18)

Using the matrix inversion lemma as before and simplifying, we get

c1 =
x2[k]

1−gkg
T
k

=
αT

k (AAT )−1b

αT
k

(AAT )−1αk

. (19)

From Eqn. 12, the approximation error energy is

‖ε1‖
2 = ‖b− c1αk‖

2 = b
T
b−2c1αT

k b+ c21. (20)



To compare these quantities with those in the MP, let us recall
the MP algorithm. At the first iteration, the residual error with the
ith atom is given as

e
i
MP = (IK −αiα

T
i )b, (21)

where we have used the subscript ’MP’ to distinguish the error from
that in the case of the CMP. Therefore the error energy is

‖ei
MP ‖2 = b

T (IK −αiα
T
i )b. (22)

If the kth atom produces the minimum error, then its coefficient is

cMP = αT
k b and the residual error is bT (IK −αkαT

k )b.
Now, if the rows of A are orthogonal, then it is easy to show that

‖ei
1[Ri]‖

2 in Eqn. 16 is equal to ‖ei
MP ‖2 in Eqn. 22. Therefore

both the CMP and the MP identify the same atom as the optimal
atom. Further, it is also easy to show that c1 = cMP . These results
are true for all subsequent iterations as well. Therefore the CMP
will produce the same sparse solution as the MP.

Let us consider the general case when the rows of A are not
orthogonal. Let us assume that the MP algorithm also identifies
αk as the optimal atom at the first iteration. Thus, we can write

b = cMP αk + ek
MP . Substituting this in the expression for c1 in

Eqn. 19, we get

c1 = cMP +
αT

k (AAT )−1ek
MP

αT
k

(AAT )−1αk

. (23)

The above expression is interesting. First of all, it shows that, if
b is collinear with any of the atoms, then c1 is equal to cMP . This

is so because ek
MP is a null vector in this case. This also shows that,

in general, the approximation error with CMP is not orthogonal to
the optimal atom. As a result the approximation error after the first
iteration is more than that of the MP algorithm. This is corroborated
by Eqn. 20, which can now be expressed as

‖ε1‖
2 = b

T
b−2c1cMP + c21 = ‖ek

MP ‖2 +(c1− cMP )2. (24)

However, this result does not extend to all subsequent itera-
tions. On the contrary, the offset term may improve the accuracy of
the atoms and the convergence speed by getting closer to the actual
coefficient magnitudes. The offset term is actually the ratio of the

kth elements of the L2 norm solutions of equations Ax= ek
MP and

Ax = αk . To see its effect clearly, consider the trivial example of
a dictionary having 2 atoms each having 2 elements. Assume that
the two atoms are as shown in Fig. 2. The known vector b has a
unique representation in terms of these two atoms (vectors repre-
senting the sides of the parallelogram). Now the MP algorithm will
identify atom α1 and α2 alternately and each iteration will reduce
the residual error. The solution will converge to the unique solution
ultimately. The CMP algorithm, however, will find the true coeffi-
cients in 2 iterations. The offset term helps in finding the true coef-
ficient of α1 in the first iteration. Though it makes the residual error
larger than that of MP, it is collinear with α2. Therefore, the second
iteration results in zero residual error. This example provides us
some intuitive idea about how, in a general case, the CMP proceeds
as against the MP. In general, we can expect a faster convergence
and better sparsity compared to the MP.

If we look very closely, we find that the CMP is equivalent to
an MP performed to solve the following system of equations:

AT (AAT )−1Ax = x2. (25)

The equivalence can be proved by deriving the expressions for the
coefficient and the residual error for the MP performed on this trans-
formed system of equations. This system of equations is obtained

by pre-multiplying the original system in Eqn. 1 by AT (AAT )−1.
In the transformed system, the atom αi gets replaced by the atom

AT (AAT )−1αi, which lies in the subspace SA. So the CMP is
basically an MP applied in the row-space of the dictionary matrix.

α
2

α
1

c2

c1

c1

c2

r1

r2

r3

r1

b

(CMP)

(MP)

(MP)

(CMP)
(MP)

(CMP)

(MP)

(MP)

Figure 2: CMP vs MP with two 2-D atoms. MP iterations consist
of alternate orthogonal projections onto the two atoms, which con-
verges to the sides of the parallelogram ultimately. CMP converges
only in two iterations.

6. SIMULATION RESULTS

In order to compare the two algorithms, we performed experiments
with a random dictionary. The dictionary was created using the re-
cently proposed K-SVD algorithm [9]. The dictionary consisted of
55 atoms with each atom having 32 elements. The atoms were nor-
malized with respect to the L2 norm. Then 1000 signal vectors of
dimension 32 were generated, each created by a linear combination
of certain number of atoms with randomly generated coefficients,
but no additive noise. The atoms themselves were selected from
random combinations.

In the first experiment, we compared the convergence of the
CMP with those of the MP and OMP algorithms. We generated sig-
nals with 8 random atoms and used them as input signals to the three
algorithms. Fig. 3 shows the mean square residual errors at differ-
ent number of iterations. The mean was computed over all the 1000
signal blocks and then it was normalized with respect to the mean
signal energy. We observe that, after some initial few iterations, the
error dies out faster with the CMP than the MP. The convergence
speed of the CMP relative to the OMP is also noteworthy.

In the second experiment, we varied the number of generating
atoms for the input signal. We specified an error bound of 0.001 for
each component of the signal vector and a maximum of 16 atoms in
the approximation. Fig. 4 displays the number of atoms identified
by different algorithms. We observe that, when the number of gen-
erating atoms is more than 3, the CMP results in a sparser solution
than the MP. Furthermore, the sparsity of the CMP is comparable to
that of the OMP up to about 7 generating atoms. Fig. 5 displays the
fraction of true atoms identified in the approximation. It is interest-
ing to see that the CMP outperforms not only MP, but also OMP.
Finally Fig. 6 shows the mean square error resulting from different
algorithms. We see that the CMP results in lesser error than the MP.
However, the error produced by the OMP is the smallest among the
three algorithms. This result motivates us to test the orthogonal ver-
sion of the CMP, whose results will be presented in a future paper.

7. CONCLUSIONS

In this paper, we have introduced the concept of a complementary
matching pursuit. Using the complementary subspace of the row-
space of the dictionary matrix, we have presented the matching pur-
suit from another perspective. We have derived the expressions for
the resulting coefficients and the residual errors and shown that the
algorithm is equivalent to an MP algorithm performed in the row-
space of the dictionary matrix. Simulations with a K-SVD opti-
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Figure 3: Residual energy for different number of iterations. Num-
ber of generating atoms is 8.
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Figure 4: No of atoms identified versus the number of actual atoms.
Error bound per component 0.001, maximum 16 atoms.

mized dictionary showed that the CMP converges faster and pro-
duces a sparser solution than the MP. Furthermore, in terms of iden-
tifying true atoms, it outperforms both the MP and the OMP algo-
rithms.

This work can be extended in several ways. First, it is interest-
ing to test the orthogonal version of the CMP and to compare it with
the OMP. Second, from the theoretical point of view, it is impor-
tant to analyze the presented algorithm for the number of iterations
required for convergence, and for the resulting number of atoms,
given a certain error bound. Third, for comparison with the MP,
it is interesting to investigate the convergence and the sparsity of
CMP vis-à-vis MP in a precise manner. The results presented here
considered a dictionary of a fixed size. Since the dimension of the
subspace S∗

A depends on the size of the dictionary, the convergence
and the sparsity of the CMP solution are expected to be increasingly
better as the size of the dictionary increases. Finally, the presenta-
tion here has considered only noiseless signals. For noisy signals,
the algorithm can be highly sensitive depending on the stability of

the matrix (AAT )−1. Hence it is important to investigate the algo-
rithm for noisy signals and to develop techniques to circumvent the
stability issues.

REFERENCES

[1] B. K. Natarajan, “Sparse approximate solutions to linear sys-
tems,” SIAM J. Comput., 24, 2, 227–234, April 1995.

1 2 3 4 5 6 7 8
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

no of atoms used to generate the signal

fr
a

c
ti
o

n
 o

f 
c
o

rr
e

c
t 

a
to

m
s
 i
d

e
n

ti
fi
e

d

 

 

MP

CMP

OMP

Figure 5: Fraction of correct atoms detected versus the number of
atoms. Error bound per component 0.001, maximum 16 atoms.

2 4 6 8 10 12 14 16
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

no of atoms used to generate the signal

m
e

a
n

 s
q

u
a

re
 r

e
s
id

u
a

l 
e

rr
o

r

 

 

MP

CMP

OMP

Figure 6: Mean square residual error versus the number of atoms.
Error bound per component 0.001, maximum 16 atoms.

[2] S. Mallat and Z. Zhang, “Matching pursuit in a time-frequency
dictionary,” IEEE Trans. SP, 41, 12, 3397–3415, 1993.

[3] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad,“Orthogonal
matching pursuit: Recursive function approximation with ap-
plications to wavelet decompositions,” Proc. 27th Asilomar
Conf. on Sig., Sys. and Comp., 1993.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders,“Atomic de-
composition by basis pursuit,” SIAM J. Sci. Comput., 20, 1,
33–61, 1988.

[5] D. L. Donoho, “For most large underdetermined systems of
linear equations the minimal l1-norm solution is also the
sparsest solution,” Comm. Pure Appl. Math., 59, 6, 797–829,
2006.

[6] J. J. Fuchs, “Recovery of exact sparse representations in the
presence of bounded noise,” IEEE Trans. Inform. Theory, 51,
10, 3601–3608, 2005.

[7] G. Rath and C. Guillemot, “Sparse approximation with an
orthogonal complementary matching pursuit algorithm,” sub-
mitted to IEEE SiPS 2008, Oct. 2008, Washington, USA.

[8] C. D. Meyer, Matrix Analysis and Applied Linear Algebra,

SIAM, 2000.

[9] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse rep-
resentation,” IEEE Trans. SP, 54, 11, 4311–4322, 2006.


