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ABSTRACT

We consider the problem of decoding of real BCH dis-
crete Fourier transform codes (RDFT) which are con-
sidered for joint source channel codes to provide robust-
ness against errors in communication channels. In this
paper, we propose to combine the subspace based al-
gorithm like MUSIC algorithm with £;-norm minimiza-
tion algorithm, which is promoted as a sparsity solution
functional, to enhance the error localization of RDFT
codes. Simulation results show that the combined al-
gorithm performs better over the performances of these
individual algorithms.

1. INTRODUCTION

Error correction coding over real and complex fields, as
opposed to finite-fields was introduced by Marshall [1].
Within the class of codes defined for error correction
over real fields, the discrete Fourier transform (DFT)
codes forms an important class. DFT codes are being
considered for joint source channel coding for providing
robustness to errors over communication channel [2, 3]
and in particular in hiperlan2 [4].

An (N, K) DFT code is a linear block code whose
generator matrix consists of any K columns of an IDFT
matrix of order N [1]. The parity check matrix consists
of the remaining (N — K) columns. Within the class of
DFT codes, real number Bose-Chaudhuri-Hocquengem
(BCH) DFT codes (RDFT) are possible if the spacing of
parity frequencies are relatively prime to N and complex
conjugate columns are selected for the generator matrix.
The generator matrix of such a code can be defined as
G = /(N/K)WEEXWy, and the parity check matrix
as H = WJ’{;X 4» Where W]}\L, denotes inverse DFT matrix
of order N, ¥ denotes an N x K binary matrix whose
nonzeros elements are Y9 = 1,3 = Yn_; - = 1 for
i=1,...,(K—=1)/2,and d = (N — K) which denotes the
indexes (K +1)/2,..., N — (K +1)/2 of an IDFT matrix
of order N [5]. A RDFT code is a maximum distance
separable code. The minimum distance of this code is
d + 1 and hence it can correct up to |d/2] errors.

Several algorithms have been proposed for decoding
of DFT codes [3] - [8]. Rioul [6] modified the Peter-
son - Gorenstein - Zeiler (PGZ) algorithm which is used
for decoding RS codes over finite fields, for decoding
real BCH codes in the presence of background noise.
The authors in [3], [7] showed that the problem of error
correction of RDFT codes is analogous to the problem

of complex sinusoidal estimation. Subspace based ap-
proaches like MUSIC, ESPRIT were applied in [5] for es-
timating these complex frequencies. All these proposed
algorithms decode perfectly under no background noise.
But in the presence of background noise like the quan-
tization noise which affects all locations, the decoding
is not exact and depends on the algorithm. In general,
subspace based algorithms performs better compared to
other algorithms in the presence of noise.

The problem of sampling and recovering sparse sig-
nals [9, 10] is analogous to the problem of decoding
RDFT codes. The techniques that have been pro-
posed by using the annhilating filter in [10] and by ¢;-
norm minimization in [11] can also be used for decoding
RDFT codes. However in the presence of the noise these
techniques perform worse than the subspace based tech-
niques.

Recently it is shown in [12] that using weighted ¢1-
norm minimization, which is achieved by the application
of an appropriate weighting matrix, the performance
of /1-norm minimization can be enhanced, and the en-
hancement is significant. The weighting should reflect
the solution, for which an a priori information is re-
quired.

In this paper we propose to use a two step algo-
rithm. In the first step a subspace based algorithm like
MUSIC will be applied. An application of a posteriori
test followed by MUSIC algorithm will confirm whether
the decoding is proper. If the a posteriori test fails then
in the second step a sub matrix of the parity check ma-
trix will be formed, which includes those columns which
may correspond to the potential error locations. This
sub matrix will be formed with the help of the a priori
output obtained by the MUSIC algorithm. A weighted
£1-norm minimization algorithm will be applied upon
this sub matrix which will be of a smaller dimension
than the original parity check matrix. Simulation results
in Section 4 shows that the proposed two step algorithm
performs much better than the performance obtained by
the application of each of these individual algorithms.

The organization of the paper is as follows: In Sec-
tion 2 we give a brief overview of the subspace algorithm
for error localization, Section 3 describes the proposed
two step algorithm, simulation results are provided in
Section 4 and finally, Section 5 concludes the paper.
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2. MUSIC LIKE SUBSPACE BASED
ALGORITHM: A REVIEW

In this section we briefly review the MUSIC like sub-
space based algorithm for decoding RDFT codes [5].
Classically, the decoder works in three steps. i) De-
tect the numbers of errors, ii) Localize the error lo-
cations, iii) Apply corrections to these locations. Let
r = ¢ + e denote the received codeword, where c de-
notes the codeword generated with a message vector m
as ¢ = Gm, and e denotes the combined impulse chan-
nel errors which affects few locations and quantization
error which affects all locations. The syndrome vector s
is computed as

s=H'r=H"(c+e)=H"e (1)
The syndrome depends only on the error.

The syndrome covariance matrix is defined as R,, =

(d_}mSmen, where S, is a matrix of syndromes [5,

pg. 2117]. It can be shown that the rank of S, is equal
to v, the number of impulse channel errors under no
quantization error [5]. Ry, is a hermitian matrix of size
mxmupy+1<m<d—v+1. R, can be decomposed
using eigenvalue decomposition as

Ry = U,A UM + U A UM (2)

where A, is a v x v diagonal matrix having v largest
eigenvalues and U, is a m X v eigenvector matrix corre-
sponding to the v eigenvalues. The columns of U, can
be shown to span the channel error subspace [5] in the
case when there is no quantization noise.

Let V™*¥ denote a error locator matrix whose
k" column is given by [l,wk,wi,...,wzn_l], wp =
exp(—27mjk/N) and k = 1,2,...,v. The columns of V,
defines the v dimensional channel error subspace on a
space of dimension m. Let ¢(z) denote the following
function

P(z) = V;LUVUL}}VI (3)

where v, denotes the 2" column of V. When there is
no quantization noise, this function goes to zero at error
locations. In the presence of quantization noise, the er-
ror locations can be found out by minimizing the above
equation over the set of N** roots of unity. Knowing
the error locations, the error values say €,,,, can be
found out by solving eq.(1) in the least square sense by
retaining only those columns of H", which corresponds
to error locations.

MUSIC algorithm performs better for fewer number
of errors and for more errors the performance is bet-
ter only at higher channel to quantization noise power
(CNR). The effect on error localization performance at
moderate CNR can be observed in fig.(1), where we plot
|¢(x)| versus the position z of a (18,9) RDFT code. The
error locations at 2, 4 and 10, which are marked by small
circles correspond to the actual impulse channel error
locations. Because of the quantization noise, |¢(z)| do
not go to zeros at these channel locations. Indeed at
positions x € {2, 3,4} we observe that |¢(z)| are almost
equal and close to zero, which results in an ambiguity

for the decoding algorithm to select the proper error lo-
cations. Blindly selecting three locations will end up in
the selection of locations 2, 3 and 10. With these wrong
error localizations, the distortion in the decoder will in-
crease due to the additional errors being introduced.
To avoid this kind of ambiguity, we propose to use
a two step algorithm. In the first step MUSIC like al-
gorithm will be used and in the next step a weighted
{1-norm minimization algorithm will be used. In the
following section we elobarate the proposed approach.

Locations

Figure 1: ¢(z) plotted Vs locations for a (18,9) RDFT
code. The positions denoted by small circle are the ac-
tual error locations, while the positions decoded by the
MUSIC algorithm are denoted by X

3. PROPOSED METHOD

The system of linear equations in eq.(1), forms a under
determined set i.e., the matrix H", which is a d x N
has fewer rows than columns (d < N). Such kind of
problems has infinitely many solutions and thus, impos-
sible to identify which of the them is indeed the correct
solution.

The impulse channel errors affect only few locations
and hence most of the values in e will be zero (or close
to zero, because of the quantization noise, which affects
all locations). Hence we can assume the sparseness (or
approximately sparse) structure of the error vector e.
With the assumption of sparseness on e, the solution
for eq.(1) can also be obtained by solving the convex
optimization problem [9]

(P1) min ||é]l;, subjectto |[H'&—slls, <e (4)
€ecRN

where the factor € bounds the amount of quantization
noise in e.

Intuitively, performance of (P;) can be enhanced,
by incorporating any a prior:i knowledge about the
impulse channel error locations. In this paper we derive
the a priori information from the MUSIC algorithm.
The proposed weighted ¢;-norm minimization method
can be outlined as follows:

Step 1:Apply a threshold ’§’ on |¢(z)
{1,2,..., N} and form a subset x5 = {x : |

| for all = €
¢(x)] < 6}.Let



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

the |z4| be S.

Step 2: A sub matrix H” is created by deleting those
columns of H" that do not belong to the set .

Step 3: Let W denote a diagonal matrix of size 8 x (3,
whose diagonal elements are |¢(zs)|. W is known as
weighting matrix.

Step 4: Solve the following convex optimization prob-
lem:

(WPy) ernei]g[j IWes|le, subjectto ||H?eS — 8|, <€

(5)
Step 5: The error locations ej,. = {i : |es,| > o}, o
is a quantity which is proportional to the quantization
noise. The decoded error vector € can be obtained by
inserting the values of e, at the locations from the set
x5 onto a zero vector of length of N x 1.

The simulation results in Section 4 shows that
(W Py) performs better than (P;). The justification for
the improved performance can be explained with the
help of re-weighted £1-norm minimization proposed re-
cently [12]. Tt is shown in [12], the performance of (P;)
can be improved significantly by appropriately weight-
ing the minimizing variable. The weights can be chosen
with some a priori information, which reflects the solu-
tion. In our formulation these a priori information are
obtained from the MUSIC algorithm. The elimination
of columns in our algorithm is equivalent to weighting
the eliminated positions by oo, since we know a priori,
these positions cannot be error positions. The other po-
sitions are weighted by |¢(z)|, which are approximately
proportional to the magnitude of the error values.

The performance enhancement of the proposed al-
gorithm comes at the cost of increase in the decoder
complexity. Since the proposed method makes use of
a second step, which involves solving an optimization
program after the MUSIC algorithm, the method is a
bit costlier compared to MUSIC. However, the proposed
optimization problem (W P;), operates on a smaller di-
mension compared to (P;) and hence is less complex
compared to solving (Py).

Solving (W P;) is costlier than MUSIC algorithm
and in practice, most of the times, the MUSIC algo-
rithm alone would be sufficient to decode, which will
eliminate the need for (WP;) in most cases. Thus the
RDFT decoder involving (W P;) would work in the fol-
lowing two steps: In the first step, a MUSIC like al-
gorithm will be applied to find €,,, . A a posteriori
check will be performed by testing the following inequal-
ity ||H" (v —&,,.) —s|le, < e. If the inequality is satisfied
then the decoder declares a success. If the inequality
fails then we move to the second step, where we solve
the optimization function (W P;) as outlined above.

4. SIMULATION RESULTS

In order to test the performance of the proposed al-
gorithm, we performed simulations on a (18,9) RDFT
code. This code is capable of detecting and correcting
up to four channel errors. In our simulations, we assume
the number of channel errors and concentrate only on
the error localization performance of these channel er-
ror locations in presence of the quantization noise. The

impulse channel errors were added manually at random
positions. These error magnitudes are generated from a
normal distribution N (y.,0?) with mean . and vari-
ance o;. The standard deviation o. is chosen to be
0.254., which ensures that the magnitude of these chan-
nel errors generated are within £0.75u. around p. with
a confidence interval of 99%.

The codewords are uniformly quantized, with a step
size of \/ﬁ, which ensures the quantization noise vari-
ance (02) of unity and zero mean. Statistically, due
to the quantization noise, each of the elements in the
syndrome vector s can be assumed to be Gaussian (by
central limit theorem, since it is linear sum of few uni-
formly distributed random variables) with zero mean.
The variance of each of the elements of s is equal to
the sum of the squares of the elements of correspond-
ing row of the matrix H". The factor € is set such
that |[H"qlls, < e, with 95% probability, where q is
the quantization noise vector. [H"ql|7, follows a chi-
square distribution with d degrees of freedom x2, hence
€2 = x%(0.95). Numerically, this factor was computed
by Monte Carlo Simulation.

With these settings in the encoder and decoder, the
error localization performances of the following cases are
compared.

i) The localization performance when only MUSIC al-
gorithm is used.

ii) The localization performance when only ¢;-norm
minimization is employed i.e., solving the optimization
problem (Py).

iii) The localization performance of the proposed two
step algorithm, i.e., solving MUSIC algorithm in the first
step and then solving the optimization problem (W Py).
The factor ¢ required for the case iii) was chosen such
that, 3, the size of subset x; was eight in all our exper-
iments.

The optimization programs (W P;) and (P;) is a sec-
ond order cone program and can be solved very effi-
ciently using standard algorithms [13]. In our work, to
solve (WP;) and (P;), we used CVX, a package for spec-
ifying and solving convex programs [14].

Fig.(2)-(5) provides the simulation results of one,
two , three and four channel localization results. In ad-
dition to the three cases mentioned above, an additional
result of solving (W P;) with identity weighting matrix
W is also provided. The simulation plots show the rel-
ative frequency of correct localization of all the errors
versus channel error power to quantization noise power,
i.e., the ratio of (u2 + 02)/0?. The relative frequency
of correct localization denotes the number of correct lo-
calizations of all error locations to the total number of
codewords generated which is 1000, i.e., we generate
1000 codewords and add the channel errors manually
at random locations for each of these 1000 codewords,
and then find how many of them in that set of 1000
erroneous codewords are correctly localized.

First we can compare the localizing performance be-
tween MUSIC algorithm and using (P;) i.e., between
case i) and ii). From all the plots we can clearly see that
MUSIC algorithm exceeds the performance of (P;). The
MUSIC algorithm performs well for fewer errors (fig.(2)
and (3)), but for more errors the performance decreases.

[ V)
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However, as the impulse noise power increases the per-
formance increases, unlike in the case of (P;) which sat-
urates. This behaviour is visible in the fig.(4) and (5)
for three and four channel error cases, where one can
clearly see that as the impulse noise power increases
the performance of MUSIC increases, while the perfor-
mance of (P;) saturates. This also suggests that the
performance of (P;) is almost independent on the chan-
nel noise power, and is a function of the number of the
errors.

The performance plot corresponding to solving
(W Py) with identity weighing matrix is in a sense equiv-
alent to solving the problem (P;) on a smaller dimen-
sion. The dimension of H” is reduced by keeping only
those columns which are potential error location candi-
dates, which is achieved with the help of MUSIC algo-
rithm. The optimization algorithm now works on this
smaller dimension with the length of the syndrome vec-
tor s being unchanged which results in enhanced perfor-
mance compared to the solving (P;). The best perfor-
mance is achieved by solving (W P;) with appropriate
weighting matrix chosen as outlined in the Section (3).
From all the plots we can observe that (WP;) clearly
performs better than all other methods, thus showing
the power of weighting. The gap between the perfor-
mances of the proposed method and other methods is
significant with more number of errors.

Thus we can conclude that by combining the MU-
SIC algorithm with weighted ¢;-norm minimization al-
gorithm, a performance better than the performances of
the individual algorithms is achieved, which is evident
from the simulation results.
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Figure 2: Relative frequency of correct localization of
one channel error

5. CONCLUSION

This paper has considered the error localization of real
BCH DFT codes, which are used for joint - source chan-
nel coding. In this context, we have proposed a two
step algorithm by combining the subspace based al-
gorithm like MUSIC, with #;-norm minimization algo-
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Figure 3: Relative frequency of correct localization of
two channel errors
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Figure 4: Relative frequency of correct localization of
three channel errors
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Figure 5: Relative frequency of correct localization of
four channel errors

rithm, which is promoted as a sparsity solution func-
tional. The simulation results are provided which shows
the proposed two step algorithm performs clearly bet-
ter than the individual performances of both these al-
gorithms, with a decoding complexity a bit more than
solving MUSIC alone but clearly much less than solving
(Pr).

The sampling of sparse diracs and error localization
problems are analogous. There are results which shows
that with a set of cardinality 2v, it is able to recon-
struct any v-sparse signal [10], but in practice in the
presence of quantization noise much more samples are
required. Though not considered in this paper, the pro-
posed method can be easily extended for such sampling
applications which improves the reconstruction perfor-
mance in the presence of noise with lesser number of
samples.
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