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ABSTRACT

We address the problem in signal classification applications,
such as automatic speech recognition (ASR) systems that
employ the hidden Markov model (HMM), that it is neces-
sary to settle for a fixed analysis window size and a fixed
feature set. This is despite the fact that complex signals
such as human speech typically contain a wide range of sig-
nal types and durations. We apply the probability density
function (PDF) projection theorem to generalize the hidden
Markov model (HMM) to utilize a different features and seg-
ment length for each state. We demonstrate the algorithm
using speech analysis so that long-duration phonemes such
as vowels and short-duration phonemes such as plosives can
utilize feature extraction tailored to the their own time scale.

1. INTRODUCTION

The Hidden Markov Model (HMM) [1] combined with
spectral analysis using cepstral coefficients [2] on fixed-
length analysis windows remains at the forefront of auto-
matic speech recognition (ASR) technology. One problem
with this architecture is the necessity of using a fixed anal-
ysis window size. This constraint is a problem because in
speech and other natural processes, the various phenomena
that are being tested (such as phonemes in speech) may occur
with differing time scale. The window size used on speech
analysis is a compromise between phonemes with long time
scale such as vowels and phonemes with shorter time scales
such as plosives. The need for a fixed-size window arises
from the fundamental probabilistic approach that underlies
the method and depends on the comparison of likelihood
functions formed on a common feature space. One could not
directly compare two likelihood functions if they are defined
on different feature spaces. Even if pains are taken to normal-
ize the behavior of similar features obtained from differing-
size data windows, the fundamental basis for comparison is
suspect.

With the introduction of the class-specific feature theo-
rem [3], [4], [5], and later the probability density function
(PDF) projection theorem (PPT) [6], the freedom now exists
to use a different feature set for each class, even for each state
in a HMM [7], and as we now show, different analysis win-
dow lengths for each state. Thus, the topic of this paper is to
apply the PPT to the problem of using varying-size analysis
windows within the framework of a HMM.

2. THE HMM AND MULTI-RESOLUTION HMM
(MRHMM) ON RAW DATA

We assume familiarity with hidden Markov models (HMMs).
A good reference is an article by Rabiner [1] from which we
borrow some notation. If we ignore the effects of overlapped
processing, the underlying assumption when a time-series is
segmented for processing is that the data in two different
segments are conditionally statistically independent (CSI). In
other words, the data in two segments are statistically inde-
pendent conditioned on the system states in the two segments
being known. The CSI property enables the efficient calcula-
tion of the joint PDF using the forward procedure. Let there
be a raw data time-series, denoted by X, consisting of an in-
teger multiple of T samples, where T is the basic time quan-
tization. The traditional approach, which we describe simply
as the HMM, is to divide the data into uniform T -sample seg-
ments which are to be processed separately. Let xt represent
the data in time-step t consisting of data samples 1+(t−1)T
through tT . In the HMM, it is assumed that:

1. during any T -sample segment, the data is governed by
one of M possible states.

2. any two samples, no matter how close together , that are
contained in two different segments, are CSI.

For the MRHMM, however, we assume that:

1. during any T -sample segment, the data is governed by
one of M possible states.

2. Once the system transitions to state s, it must remain in
that state for a number of length-T time steps divisible by
Ks, or nKsT samples, where Ks is the integer minimum
duration parameter for state s, and n ≥ 1. In other words,
the dwell time in state s is made up of meta-segments of
size KsT sample.

3. Two data samples xi and x j are assumed to be CSI and are
processed separately if and only if a state transition has
occurred between the samples and/or they are contained
in different meta-segments. Otherwise, samples xi and x j

are processed jointly.

4. Because the above assumption is too restrictive in ordi-
nary systems, we need to allow for arbitrary-length dwell
times in a given signal state. Let the term class refer to
a certain signal state or phenomenon. Let each class be
associated with several states, each with a different Ks.
If, for example, a class is associated with states having
Ks = {2,3,4,6,8}, we can produce a large number of dif-
ferent dwell times using combinations of meta-segments
with the above sizes. We call these states slave states or



slave partions because they are slaved to a signal class.

Let Q = [s1,s2 . . . sN ] be a set of state values, where 1 ≤
st ≤ M, 1 ≤ t ≤ N. We call Q a trajectory because it defines
one of the many paths through the state diagram or trellis.
The restrictions imposed above having to do with dwell time
can be imposed by a structured STM by properly expanding
and structuring π and A. For each state s, we can define
a partition of states, which we call wait states, of size Ks.
Let A

e be the expanded MRHMM STM and let πe be the
expanded set of prior state probabilities. We structure A

e so
that state transitions into the state s partition are only allowed
into the first wait state. From the first wait state, the state is
forced to increment to the second, third, ... and finally to wait
state Ks. From wait state Ks, the state is allowed to transition
to the first wait state of any state partition. Note that although

A
e is dimension Me ×Me where Me = ∑M

m=1 Km, there are

only M2 free parameters in A
e.

At this point, the MRHMM can be seen as nothing more
than a HMM with a specially structured π and A. But the
more important difference, which we will explain below, is
in the way that p(X|Q) is calculated. For the moment, let
us talk about our goals. We seek an algorithm to solve the
following four problems:

1. Segmentation. Find the most likely trajectory through the
trellis subject to the restrictions described above. Know-
ing the most likely trajectory is tantamount to segmenta-
tion because as the trajectory dwells in a given state, it
defines a segment.

2. State probabilities. Determine the a posteriori state prob-
abilities γt,m = p(st = m|X). This is a more complete de-
scription of the trajectories than knowing the single most
likely trajectory.

3. Joint PDF. The joint likelihood function of all the data
given the model is given by

L(x) = ∑
Q∈Q

p(X|Q) p(Q), (1)

where Q is the set of all possible trajectories and P(Q) is
the a priori probability of a given trajectory through the
trellis. Note that L(X) averages p(X|Q) over all trajec-
tories through the trellis weighted by the probability of
the trajectory. Invalid trajectories have zero contribution.

4. Re-estimation. We would like to estimate the model pa-
rameters from the data. Parameters include π , A, and
the parameters θ s of the state-conditional data PDFs. In
section 3 we will explain how the raw data PDFs can be
computed from low-dimensional feature PDFs.

For the HMM, the above problems are solved by the forward
procedure and the associated backward procedure and the
Baum-Welch algorithm [1]. For the MRHMM, we need to
adapt these algorithms, not only by structuring the π and A,
but by changing the way that p(X|Q) is calculated.

At this point, all we have is a HMM with restrictions on
the dwell times of each state. To change the HMM into a
MRHMM, we need to define partial PDF values. To un-
derstand partial PDF values, refer to figure 1. Here we see
two potential segmentations of the data into meta-segments.
Let’s assume that we process the meta-segments in order to
determine the PDF of the raw meta-segment data given the
state. In section 3 we will show how we calculate these meta-
segment PDFs using low-dimensional feature PDFs. Al-
though the data is processed in meta-segments, the partial

PDF values are computed at each time step by taking the K-
th root of the likelihood value in the meta-segment. Partial
PDF values are constant within a meta-segment. This value
is entered at each time-step within the meta-segment.

Unlike actual PDF values, it is not always valid to com-
pare the partial PDF values from different segmentatons at a
given time-step. If the partial PDF values are derived from
different meta-segment sizes, the comparison is meaningless.
On the other hand, and this is the main point, the product of
the partial PDF values along any two valid paths, subject
to restrictions of dwell time, can be fairly compared. By
restricting the dwell times in the way described above, the
product of partial PDF values along valid paths always equals
the product of the full PDF values of the set of meta-segments
corresponding to the path. This is because state transitions
are not allowed until the meta-segment is complete. To im-
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Figure 1: Two possible segmentations for a section of data
equal to 36 time steps.

plement the MRHMM, we gather the partial PDF values into
a matrix. Let Pt,q be the partial PDF value at time t and wait
state q. Recall there are Me wait states in total. The range of
wait states is divided into partitions and each partition corre-
sponds to a particular state s. Let q′ be the differential wait
state taking values from 1 to Ks within the partition for state
s. Matrix entry Pt,q is equal to the Ks-root of the PDF of the
length Ks meta-segment that started at time step (t −q′ + 1).
Note that Pt,q is constant along diagonal lines within a par-
tition. To calculate (1), we apply the standard forward pro-
cedure using the expanded state probabilities A

e and πe and
treating Pt,q as the state probabilities of a normal HMM. At
this point we have a raw-data based MRHMM model that we
can compute efficiently using the forward procedure operat-
ing on Pt,q. To create a feature-based MRHMM model, we
need only to apply the PPT.

3. CLASS-SPECIFIC MULTI-RESOLUTION
CLASS-SPECIFIC (CS-MRHMM)

The standard feature-based HMM is the same as the raw-data
based HMM with the raw data segments xt replaced by the
feature vector

Z = {z1,z2 . . .zN}, zt = T (xt ).

With this simple replacement, the forward procedure com-
putes the feature-based likelihood function

L(Z) = ∑
Q∈Q

p(Z|Q) P(Q), (2)

For the CS-MRHMM, we need to use the PPT to transi-
tion to the feature domain. Let

x
K
t = [x1+(t−1)T . . .x(t+K−1)T ],

be the length KT sample analysis window which starts at
sample 1+(t−1)T . It includes segments xt through xt+K−1.



The term p(xK
t |s) will be calculated using the PDF projec-

tion theorem [6]. As we have written several publications
on the topic including the tutorial article [8], we describe the
method only briefly. Let x be a general segment of raw time-
series data. Let zs = Ts(x) be a feature set calculated from x

specifically designed for state s. Let p̂(zs|s) be a PDF esti-
mate of the feature set zs based on training data from state s.
The feature likelihood function is projected from the feature
space to the raw data by pre-multiplying by the J-function as
follows:

p̂p(x|s) = J(x;Tm,H0,s) p̂(zs|s). (3)

The function p̂p(x|s) can be regarded as a function only of x

by substituting Ts(x) for zs and can be shown to integrate to 1
over x (thus it is a PDF). The J-function is a unique function
of x determined precisely from the feature transformation Ts

and the class-dependent reference hypothesis H0,s:

J(x;Ts,H0,s) =
p(x|H0,s)

p(zs|H0,s)
. (4)

Since J(x;Ts,H0,s) is determined a priori without regard
to training data, it can be considered the untrained part of
p̂p(x|s), while p̂(zs|s) is the trained part.

While it is true that p̂p(x|s) is a PDF, it is only an esti-
mate of p(x|s). The degree to which p̂p(x|s) is a good esti-
mate of p(x|s) depends on (a) the accuracy of p̂(zs|s) and (b)
the degree to which zs is a sufficient statistic for the binary
hypothesis test between s and H0,s. In the rare case that zs is
in fact a sufficient statistic, the accuracy of p̂p(x|s) depends
only upon the accuracy of the low-dimensional PDF estimate
p̂(zs|s). The J-function takes many forms [6], one of which
can be used when zs are maximum likelihood (ML) estimates
of a set of parameters. In this case, J(x;Ts,H0,s) has a simple
form based on the Fisher’s information matrix [6].

4. PRACTICAL IMPLEMENTATION DETAILS

When values of Ks are large, a highly overlapped set of win-
dows is required. The amount of processing required can be
mitigated, by recursive processing. For example, the FFT or
autocorrelation function (ACF) of a segment can be updated
to reflect data that has been shifted out and data that has been
shifted in [9]. Applying the MRHMM to real data warrants
additional details beyond what has been so far described.

4.1 Training the CS-MRHMM.

In the standard Baum-Welch algorithm for re-estimation of
HMM parameters [1], the state feature PDFs for state s are
trained by maximizing log-likelihood functions weighted by
γs,t . Since the standard HMM does not differentiate between
wait states, we would need to a separate PDF estimate for
each wait state. However, for the CS-MRHMM, there are
only PDF estimates associated with the initial wait states,
the first wait states of each partition. Logically, the CS-
MRHMM produces values of γq,t that are constant in diag-
onal streaks in a partition. That is, γq,t = γq+1,t+1 if wait
states q and q + 1 are in the same partition. Thus, in the CS-
MRHMM, each analysis window can be traced to a given
constant-valued streak in the γq,t matrix. When training the
CS-MRHMM, the features from the associated analysis win-
dow are weighted by the corresponding value of γq,t in the
streak. Training becomes slightly more complicated, how-
ever, once we consider slave partitions and if the number of

signal states exceeds the number of signal classes. While
each partition is associated with a PDF estimate, we may
not want all partition PDF estimates to be independent. To
remedy this situation, we “gang together” all partitions that
associate with a given signal class. To gang partitions, we
first create a compressed version of γq,t , denoted by γc

m,t ,
which sums γq,t over all wait states associated with signal
class m. Then we then weight an analysis window by the
smallest value of γm,t in the set of time steps t contained in
the analysis window. This works very well in practice but is
a clear departure from the Baum-Welch algorithm and may
produce an algorithm without guaranteed monotonicity.

4.2 Efficient Implementation

The number of wait states in the expanded HMM problem
can be very large. The forward and backward procedures
have a complexity of the order of the square of the number
of states. Thus, an efficient implementation of the forward
and backward procedures and Baum-Welch algorithm may
be needed that takes advantage of the redundancies in the
expanded problem. We have obtained a time reduction factor
of 42 with a problem that had 7 signal classes and expanded
to 274 wait states. The two algorithms were tested to produce
the same results within machine precision.

5. EXAMPLES

5.1 Simulated Data

To illustrate the concepts, we tested the concept of the CS-
MRHMM using simulated data. To independent identically
distributed (iid) Gaussian noise, we added a low frequency
(LF) pulse of autoregressive (AR) process of 128 samples
in length with a peak frequency response of 0.4 radians per
sample, followed by a random-length gap of at least 256 sam-
ples, followed by high frequency (HF) pulse of AR process
of 64 samples with a peak frequency response of 1.2 radians
per sample. An example of the signal and noise is shown
in Figure 2. We implemented the MRHMM with three sig-
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Figure 2: Example of spectrogram of synthetic data. The
data consists of three signal classes. Class 1 (noise) occurs
first, then a low-frequency pulse of duration 128 samples,
then noise, then a high-frequency pulse of duration 64 sam-
ples.

nal states, each corresponding to a signal class : “noise”, “LF
pulse”, and “HF pulse”. We used nine partitions including six
slave partitions. The elemental segment length was T = 32
samples. There were a total of 25 wait states. Parameters of
the nine partitions are listed in table 1. Autoregressive (LPC)
features of model order P (see table 1) were extracted by
overlapped window processing. A separate feature processor
was used for each combination of K and P. Features were
shared between partitions that had the same K and P values.



Partition Signal class KT K P

1 Noise 256 8 4
2 Noise 128 4 4
3 Noise 64 2 4
4 Noise 32 1 3

5 LF Pulse 128 4 4
6 LF Pulse 64 2 4
7 LF Pulse 32 1 3

8 HF Pulse 64 2 4
9 HF Pulse 32 1 3

Table 1: Partition parameters for the illustrative example.
K is the partition length in elemental segments. KT is the
length of the partition in samples. Parameter P is the autore-
gressive (AR) model order (same as LPC model order).

Analysis windows were shifted always by the elemental seg-
ment length of 32 samples for each update, so the amount of
overlap depended on the length of the analysis window. To
handle end effects, data was assumed to wrap around in time.

Features were extracted from each analysis window by
first taking the FFT, computing the magnitude squared, then
computing the inverse-FFT to produce the autocorrelation
function (ACF). The Levinson algorithm was used to pro-
duce the reflection coefficients of order P. The total power in
window is also stored as the P + 1st feature. The J-function
[6] is obtained by use of the saddle-point approximation [10].
Further details of the implementation details of the AR mod-
els can be found in [8].

In Figure 3, we see the partial PDF matrix Pi,m for a typ-
ical sample. Wait states q = 1 through q = 15 are associated
with the “Noise” signal class. wait states q = 16 through
q = 22 are associated with the “LF Pulse” signal class, and
wait states q = 23 through q = 25 are associated with the
“HF Pulse” signal class. The gamma probabilities are a by-

Figure 3: Partial PDF matrix Pi,m showing devisions between
signal classes (solid horizontal lines) and between wait state
partitions (dotted lines). Higher probability is darker.

product of the Baum Welch algorithm [1] and indicate the
relative probability of each wait state given the data. The
gamma probabilities corresponding to figure 3 are shown in
Figure 4. This figure can be interpreted as the trajectory
through figure 4 that pick up the highest probabilities while
meeting the restrictions set by the state transition matrix.

Note that the wait states for “LF pulse” (q = 16 through
q = 19) are clearly seen where the pulse occurs. The same
is true of the “HF pulse” event (q = 23 through q = 24) .
It is possible to see various competing trajectories through

Figure 4: Wait state probabilities γq,t for illustrative example.

the trellis. Note for example in time steps 43 through 56,
the noise gap between the two pulses, the HMM is in the
noise signal class. In steps 43-50, it is in partition 1, (wait
states q = 1 through q = 8). Then after exiting wait state
q = 4, it has located two possibilities to span the six time
steps remaining before HF pulse occurs. It can either go into
partition 2 (wait states q = 9 through q = 12) then partition
3 (wait states q = 13 through q = 14), or it can choose the
reverse, partition 3 then partition 2.

The gamma probabilities can be collapsed to indicate just
the signal classes, as shown in Figure 6. The class probabili-

Figure 6: Signal class probabilities calculated by summing
figure 4 over the wait states of each class. Darker is higher
probability. Time runs from left to right. Signal class identity
is on the vertical axis: top: Noise, Middle: LF pulse, Bottom:
HF pulse.

ties (figure 6) is an accurate indication of the true content of
the data to a time resolution of T = 32 samples.

5.2 Speech Data

We used the CS-HMM to analyze the spoken word “stool”
at 16 kHz sample rate. Space restrictions do not permit a
detailed description of the experiment. We identified seven
signal classes and assigned values of K and P (LPC order) (1)
Noise used for both background and the “T” closure: K = 12
or 384 samples, P = 7, (2) “S” : K = 12 or 384 samples,
P = 7, (3) “T” Burst : K = 4 or 128 samples, P = 5, (4) “T”
Aspiration : K = 8 or 256 samples, P = 6, (5) “oo” vowel
part 1: K = 24 or 768 samples, P = 8, (6) “oo” vowel part
2: K = 24 or 768 samples, P = 8, (7) “L” : K = 24 or 768
samples, P = 8. After adding slave partitions, we had a total
of 36 partitions and a total of 258 wait states. The expanded
STM was 258 by 258. Using efficient programming, neither
the partial probability matrix nor the expanded STM actually
need to be created. Figure 5 shows the result of analysis
of one example with the CS-MRHMM. Important to note is
that the three components of the “T” can be clearly seen by
observing γc

m,t . This may have applications in not just ASR,
but automatic phoneme labeling and any application where
accurate segmentation is desired.



Figure 5: Example of CS-MRHMM operating on the word “stool”. From top to bottom: compressed gamma probabilities
γc

m,t , log signal power, and spectrogram. The dwell time in each state is composed of sequences of meta-segments that are
assigned to each state. Short analysis windows have been employed for the “T”, while longer processing has been used for
background noise and the sounds “S”, “oo” and “L”. The three components of the “T” can be clearly identified.
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