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ABSTRACT

The features based on the MEL cepstrum have long dom-
inated probabilistic methods in automatic speech recogni-
tion (ASR). This feature set has evolved to maximize general
ASR performance within a Bayesian classifier framework us-
ing a common feature space. Now, however, with the advent
of the PDF projection theorem (PPT) and the class-specific
method (CSM), it is possible to design features separately
for each phoneme and compare log-likelihood values fairly
across various feature sets. In this paper, class-dependent
features are found by optimizing a set of frequency-band
functions for projection of the spectral vectors, analogous
to the MEL frequency band functions, individually for each
class. Using this method, we show significant improve-
ment over standard MEL cepstrum methods in speaker and
phoneme specific recognition.

1. INTRODUCTION

The MEL cepstrum features [1] and its derivatives have long
been the staple of automatic speech recogniton (ASR) sys-
tems. One may write the MEL cepstrum features as

z =DCT(log(A'y)), (1)

where vector y is the length-N/2 + 1 spectral vector, the
magnitude-squared DFT output and the columns of A are
the MEL band functions [1]. In typical speech applications,
only the first L elements of z are preserved. Because the
logarithm and the discrete cosine transform (DCT) may be
considered a feature conditioning step which results in more
Gaussian-like and independent features, we may concentrate
our attention on the matrix multiplication

w=Ay. 2)

The key operation here is dimension reduction by linear pro-
jection onto a lower-dimensional space. Now, with the in-
troduction of the class-specific method (CSM) and the PDF
projection theorem (PPT) [2], one is free to explore class-
dependent features within the rigid framework of Bayesian
classification. Some work has been done in class-dependent
features [3],[4] however existing approaches are only able to
use different features through the use of compentation factors
to make likelihood comparisons fair. Such approaches work
if the class-dependent feaure transformations are restricted to
certain limited sets. Both methods fall short of the potential
of the PPT which makes no restriction on the type of feature

transformations available to each phoneme. Under CSM, the
“common feature space” is the time-series (raw data) itself.
Feature PDFs, evaluated on different feature spaces are pro-
jected back to the raw data space where the likelihood com-
parison is done. Besides its generality, the CSM paradigm
has many additional advantages as well. For example there
is a quantitative class-dependent measure to optimize that al-
lows the design of the class-dependent features in isolation,
without regard to the other classes.

2. CLASS-SPECIFIC APPROACH

When applying CSM, one must find class-dependent signal
processing to produce features that characterize each class
or sub-class. We seek an automatic means of optimizing the
matrix A for a given subclass. We first review CSM.

2.1 Class-Specific Method (CSM)

Let there be M classes among which we would like to clas-
sify. The class-specific classifier, based on the PPT, is given
by

argmax py (x|Hy),

where p,(x|Hy) is the projected PDF (projected from the
feature space to the raw data space). The projected PDF is
given by

pp(lem) = Jm(xaAmaHO,m) P(zm|Hn), (3)

where p(z;,|H,) is the feature PDF estimate (estimated from
training data) and the J-function is given by

Px|Hom)

Jn(X, Ay, Hy ) = ,
m( m O,m) P(Zm|H0,m)

“)

and Hy,, are class-dependent reference hypotheses. The
class-dependent features z,, are computed from the spectral
vector y through the class-dependent subspace matrices A,
as

zm =C(Aly), (5)

where C is the feature conditioning transformation. Note that
the J-function is a fixed function of x precicely defined by
the feature transformation from x to z and the reference hy-
potheses Hp ,,. It is the “correction term” that allows feature
PDFs from various feature spaces to be compared fairly be-
cause the resulting log-likelihood function is a PDF on the
raw data space x. The J-function is a generalization of the



determinant of the Jacobian matrix in the case of a 1:1 trans-
formation. The PPT guarantees that p,(x|H,,) given by (3) is
a PDF, so it integrates to 1 over x regardless of the reference
hypothesis Hy ,, or the feature transformation producing z,
from x. It is up to the designer to choose Hy,, and A, to
make p,(x|H,) as good an estimate of p(x|H,,) as possible.
The designer is guided by the principle that if z,, is a suffient
statistic for H,, vs. Ho, then p,(x|H,,) will equal p(x|H,,)
(provided p(z;,|Hy,) is a good estimate). We can also think
of it as a way of embedding a low-dimensional PDF within a
high-dimensional PDF.

We have good reason, as we shall see, to use a common
reference hypothesis, Hy, which simplifies the classifier to

argmrsxjm(x,Am,Ho) P(zpm|Hin) 6)

where the J-function J;,(x) now depends only on A,,. Note
that in contrast to other class-dependent schemes using pair-
wise or tree tests, CSM is a Bayesian classifier and has
the promise CSM of providing a “drop-in” replacement to
the MEL-cepstrum based feature processors in existing ASR
systems.

2.2 Finding a class-specific subspace

We are interested in adapting the matrix A to an individ-
ual class. We propose the strategy of selecting A,, to max-
imize the total log-likelihood of the training data using the
projected PDF. Let

K
Lx'x*.. x5 A,) = > logpy(x'|Hm) @)
i=1

where K is the number of training vectors. If we expand
Pp(X[Hn) ,

p(x|Ho)
p(zm|Ho)

where Hj is the independent Gaussian noise hypothesis, we
see that the term p(x|Hp) is independent of A,,. Thus, to
maximize L, we need to maximize the average value of

logﬁ(zm|Hm) —Ing(Zm|H()). (®)

Our approach is to assume that the first term in (8) is only
weakly dependent on A,, and concentrate on the second
term. Given the simplicity of the reference hypothesis Hy, the
second term p(z;,|Hp) can be known, either in analytic form
or in an accurate analytic approximation [5]. Thus, it is easy
to analyze its behavior as A, changes. We have obtained the
first derivatives of log p(z,,|Hy) with respect to each element
of A,,. We proceed, then by ignoring the term p(z,,|H,,) and
maximizing the function

o) = | | o)

K
Q(xl,xz...xK;Am) =— z 10gp(z£n|Ho). 9)
i=1

The change in p(z,|H,,) can be minimized as A, is changed
by insisting on an orthonormal form for A,,. Thus, by max-
imizing L (7) under the restriction that A, is orthonormal,
we approximately maximize L. We apply the following con-
straints to A,,;:

e Orthonormality. The columns of A,, are an orthonor-
mal set of vectors. We use a orthonormality under the
inner product

N/2

<X,y >= Z EiXiVi,
i=0

where ¢; has the value 2 except for the end bins (0 and
N/2) where it has value 1. Ortho-normality under this
inner product means that the spectral vectors will be or-
thonormal if extended to the full N bins. Use of orthonor-
mality helps to stabilize the term p(z,,|Hy) as A, is var-
ied.

e Energy sufficiency. The energy sufficiency constraint
means that the total energy in x,

N
E=Z:)cl2

i=1

can be derived from the features. Energy sufficiency is
important in the context of floating reference hypotheses
[2]. In order that the classifier result is scale invariant,
we need energy sufficiency. With energy sufficiency, the

term
p(x|Ho)
P(zm|Ho)

will be independent of the variance used on the Hy ref-
erence hypothesis. Note that E = e}y/N, where e| =
[1,2,2,2...,2,1], which is composed of the number of
degrees of freedom in each frequency bin. Thus, energy
sufficiency means that the column space of A,, needs to
contain the vector e;.

2.2.1 Class-specific iterated subspace (CSIS)

Since we would like the feature set created by projecting
onto the columns of A to characterize the statistical varia-
tions within the class, a natural first step is to use principal
component analysis (PCA). To do this, we arrange the spec-
tral vectors from the training set into a matrix
X=[y'y* -y,

where K is the number of training vectors. To meet the en-
ergy sufficiency constraint, we fix the first column of A to be
the normalized e;

- €1

e = ——.

le1]|

To find the best linear subspace orthogonal to e, we first
orthogonalize the columns of X to e; X, = X — &;(€'X).
Let U be the largest P singular vectors of X,,, or equivalently
the largest P eigenvectors of X, X/,. We then set A = [&,U].
We then proceed to maximize (9) using an iterative approach.
We use the term class-specific iterated subspace (CSIS) to
refer to the columns of A,, obtained in this way.

3. TECHNICAL APPROACH

3.1 Data Set

We used the TIMIT [6] data set as a source of phonemes,
drawing all of our data from the “training” portion. TIMIT
consists of sampled time-series (in 16 kHz .wav files) of



scripted sentences read by a wide variety of speakers and in-
cludes index tables that point to start and stop samples of
each spoken phoneme in the text. There are 61 phonemes in
the database, having a 1 to 4 character code. We use the term
dataclass to represent the collection of all the phonemes of
a given type from a given speaker. The average number of
samples (utterences) of a given speaker/phoneme combina-
tion is about 10 and ranges from 1 up to about 30 for some
of the most common phonemes. We used speaker/phoneme
combinations with no fewer than 10 samples.

3.2 Cross-Validation

In all of our classification experiments, the utterences of a
given speaker/phoneme were divided into two sets, even (ut-
terences 2,4,6 ...) and odd (utterences 1,3,5...). We conducted
two sub-experiments, training on even, testing on odd, then
training on odd, testing on even. We reported the sum of the
classification counts from the two experiments.

3.3 Processing

We now describe the processing for the features of the MEL
frequency cepstral coefficient (MFCC) classifier and CSIS.
In order to concentrate on the basic dimension reduction step
(equation 2), the simplest possible processing and PDF mod-
eling was used. Each step in the processing is described be-
low, in the order in which it is processed.

3.3.1 Resampling

We pre-processed all TIMIT .wav files by resampling from
16 kHz down to 12 kHz. Phoneme endpoints were corre-
spondingly converted and used to select data from the 12 kHz
time-series.

3.3.2 Truncation

The phoneme data was truncated to a multiple of 384 sam-
ples by truncating off the end. Those phoneme events that
were below 384 samples at 12 kHz were dropped. Doing
this allowed us to use FFT sizes of 48, 64, 96, 128, or 192
samples, which are all factors of 384.

3.3.3 FFT processing

We computed non-overlapped unshaded (rectangular win-
dow function) FFTs resulting in a sequence of magnitude-
squared FFT spectral vectors of length N/2 + 1, where N is
the FFT size. The number of FFTs in the sequence depended
on how many non-overlapped FFTs fit within the truncated
phoneme utterance.

3.3.4 Spectral normalization

Spectral vectors were normalized after FFT processing. For
non-speaker-dependent (MEL cepstrum) features, the spec-
tral vectors were normalized by the average spectrum of all
available data.

For CSIS (speaker-dependent) features, the spectral val-
ues for each speaker/phoneme combination were normalized
by the average spectrum for that speaker/phoneme. In clas-
sification experiments the average spectrum was computed
from the training data to avoid issues of data separation.

3.3.5 Subspace Projection (Matrix Multiplication)

Next, the spectral vectors, denoted by y, were projected onto
a lower dimensional subspace by a matrix as in (2) resulting
in feature vectors, denoted by w.

For MFCC, the columns of A were MEL frequency band
functions. The number of columns in matrix A was N, +2
including the zero and Nyquist half-bands and the number of
DCT coefficients was L.

For CSIS, A was an orthonormal matrix determined
from the optimization algorithm. For CSIS, the number of
columns of A was P+ 1 where P is the number of basis func-
tions in addition to the first column &;.

3.3.6 Feature Conditioning

From a statistical point of view, feature conditioning has no
effect on the information content of the features. It does,
however, make probability density function (PDF) estima-
tion easier if the resulting features are approximately inde-
pendent and Gaussian. For MFCC, the features were condi-
tioned by taking the log and DCT as in (1), then retaining the
first L coefficients. For CSIS, features were conditioned first
by dividing features 2 through P+ 1 by the first feature. This
effectively normalizes the features since the first feature, be-
ing a projection onto ey, is a power estimate for the segment.
Lastly, the log of the first feature is taken. Mathematically,
we have for CSIS

w=Ay,
z1 = log(wy),
zZi=wi/wi, i=2,3,...P+1,

where w; is the first element of w and equals €}y.

3.3.7 J-function calculation

J-function contributions must be included for FFT
magnitude-squared, spectral normalization, matrix mul-
tiplication, and feature conditioning. See [7] for details of
these class-specific modules.

3.3.8 PDF modeling and Classification

We intentionally used an over-simplified process for PDF es-
timation and classification. One reason is that the use of
overlapped window processing, which is common in ASR,
is difficult to achieve using CSM due to the statistical depen-
dence of overlapped segments and the difficulty in deriving
the denominator term in (4). To deal with segment-to-data
registration issues, on-the fly segmentation, such as that used
in multi-resolution HMM [8], is more appropriate for CSM.
The use of rectangularly-shaded FFTs and simple likelihood
summation is a necessary compromise allows MFCC and
CSM to be meanigfully compared. Furthermore, by doing
this, we made it easier to interpret the results because differ-
ences in performance could only be attributed to the differ-
ences in the choice of matrix A.

For PDF estimation, we used a simple multivariate Gaus-
sian PDF model, or equivalently a Gaussian mixture model
(GMM) with a single mixture component. We assume in-
dependence between the members of the sequence within a
given utterence, thus disregarding the time ordering. The
log-likelihood value of a sample was obtained by evaluat-
ing the total log-likelihood of the feature sequence from the



phoneme utterance. The reason we used such simplified pro-
cessing and PDF models was to concentrate our discussion
on the features themselves. Classification was accomplished
by maximization of log-likelihood across class models. For
CSS and CSIS, we added the log J-function value to the log-
likelihood value of the GMM [2], implementing (6) in the
log domain.

4. EXPERIMENTAL RESULTS

4.1 Validation of Assumptions

An important experiment to perform is to validate the as-
sumption used in section 2.2, that maximizing L (equation
7) can be achieved by maximizing Q in equation (9). Al-
though space does not permit presenting the results, we have
obtained overwhelming empirical evidence that the second
term in (8) does in fact dominate.

4.2 Choice of FFT size and model order

The CSIS approach is parameterized by two parameters, the
FFT size N, and the model order P. The MFCC method
is parameterized by the FFT size N, the number of MEL
bands N, and the number of DCT coefficients L. We chose
to use the same value of N for MFCC and CSIS. This en-
sured that the only significant difference between MFCC and
CSIS would be the matrix A which is chosen as a func-
tion of class thanks to the PPT. Feature conditioning is also
different but is not expected to contribute greatly to perfor-
mance differences. For fair comparison, we operated the
MFCC at the parameter settings that produced the fewest
total errors, which turned out to be N = 96, N, = 25, and
L = 12. The values of N, =25, and L = 12 are commonly
used in speech applications, but N = 96, being 8 millisec-
onds, is significantly smaller than usual. The reason for
this may be the fact that we used rectangular shading which
has the same effective number of samples as a 16 ms win-
dow that is more common. In any case, this combination
gave the best results for MFCC of all those we tried which
included N = {48,96,128,192,384}, L = {6,8,10,12,14},
N, ={16,20,25}. For CSIS, we are left with deciding on the
model order P. Refer to figure 1. In which we see the total
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Figure 1: Total log-likelihood (with even-odd cross-
validation) as a function of P for speaker MGRLO phoneme
“N” with CSIS.

log-likelihood L of speaker MGRLO,phoneme “N”, as a func-
tion of P. Even-odd cross-validation is used (section 3.2).
Note that the likelihood increases up to P = 5 then exhibits

Experiment MFCC CSIS(5) CSIS
1Y vs. EH 45 49 47
AE vs. EH 46 43 40
Rvs. L 64 57 52
AX vs. AXR 84 68 66
IX vs. IH 85 86 80
Nvs. M 82 48 47
DCL vs. TCL 96 84 86
Total 502 435 418

Table 1: Error metric E,. as a function of phoneme pair and
classifier type. CSIS(5) indicates that model order P is fixed
at P =5 while for CSIS, it is chosen separately per class.

a steep decline. This suggests that a dimension-5 subspace
is optimal to represent this speaker/phoneme combination.
For the individual speaker experiments, we chose model or-
der for each speaker/phoneme combination in the same way.
When we expanded the data to all male speakers of “N”, we
attained a peak at P = 8. This indicates that an increase in
subspace dimension is required for multiple speakers.

4.3 C(lassification Experiments

We conducted both two-phoneme experiments and single-
speaker experiments which will be described separately. All
of our experiments used strict separation between training
and testing data (section 3.2). Our primary performance met-
ric, which we denoted by E,, measured all off-diagonal ele-
ments in the confusion matrix. That is, any error, either iden-
tifying the wrong phoneme or speaker was counted.

4.3.1 Two-Phoneme Experiments.

The two-phoneme experiments were designed to test the abil-
ity to distinguish speakers of a given phoneme as well as clas-
sify two phonemes in a limited multi-speaker environment.
We selected fourteen phonemes arranged into seven experi-
ments, each involving two phonemes. For each phoneme, we
chose a set of from four to seven individual speakers of the
same sex. We selected phoneme/speaker combinations that
had large numbers of utterences per speaker - a minimum of
ten utterences per speaker and an average of about 12 utter-
ences per speaker/phoneme combination. Thus, there were
about 60 utterences per phoneme.

The results are tabulated in table 1. First, CSIS, with P
chosen separately for each class performed generally better
than CSIS(5) which uses model order fixed at P = 5. This
indicates that individually optimized model order is better.
The fact that the model orders were determined individually
without regard to other classes validates is an important ob-
servation. In comparison to MFCC, CSIS achieved a lower
E. in all experiments except one where it was comparable.
On the whole, MFCC produced 20 percent more errors. For
the difficult N vs. M problem, it produced 74 percent more
errors. Although there is insufficient space for much detail,
we note that MFCC produced fewer inter-phoneme errors.

4.3.2 Single-Speaker Experiments.

The single-speaker experiments were designed to test the
ability to distinguish phonemes of a given speaker. In each of
the seventeen single-speaker experiments, we gathered data
from a single speaker and between four and seven phonemes



into one classification experiment and measured E.. The re-
sults are tabulated in table 2. The results reflect the results

Speaker MFCC CSIS(5) CSIS
fmemO 19 20 18
fceg0 36 32 20
mkag0 37 25 21
fapb0 32 28 29
mecxm0Q 38 23 22
mmea0 23 21 22
fdawO 30 23 24
mgrl0 22 16 15
mkddO 27 21 19
msatl 23 20 19
mbmal 43 26 26
mprkO 23 20 19
fk1hO 25 22 21
mjma0 24 21 19
mbthO 18 16 14
mbcg0 26 23 23
mmlmO 29 28 30
Total 475 385 361

Table 2: Comparison of MFCC and CSIS in single-speaker
experiments using error metric E.. CSIS(5) indicates CSIS
with model order fixed at P = 5.

of the two-phoneme experiments. CSIS performed better
than MFCC except in one experiment where it was compara-
ble. Total error is 31 percent higher for MFCC. Furthermore,
CSIS performs better when model order is individually se-
lected (section 4.2). This is significant because in addition to
matrix A being a function of class, the feature dimension is
also a function of class.

4.4 Discussion of Results

We can draw some meaningful conclusions from the exper-
iments. First, we see that both in discriminating phonemes
of a given speaker and in discriminating speakers of a given
phoneme, CSIS is consistently better than MFCC. Although
we had insufficient space for details, when we measured the
inter-phoneme errors in the two-phoneme experiments (dis-
regarding speaker identity), MFCC did generally better. The
reason may lie in the shrinking of the linear subspace as we
restrict ourselves to a single speaker/single phoneme. When
the subspace is limited, CSIS may be able to find a better
statistical model of the distributiuon. A second piece of evi-
dence that supports this is the fact that the highest improve-
ment of CSIS over MFCC was obtained in the experiment
“N-vs-M” which is one of the most difficult problems in
ASR, an indication that CSIS produces a better PDF esti-
mate at the center of the distributions. Thus, when classes
are more close to each other, i.e. overlapped, the better PDF
estimate will be more important, because the optimal deci-
sion boundary is given by the true likelihood ratio. However,
since MFCC has evolved for phoneme discrimination, it per-
forms better than CSIS in the inter-phomeme areas. When
two phonemes are very similar, discrimination occurs “near
the peak” where CSIS performs better.

Future work should determine how can the strengths of
both CSIS and MFCC be best utilized. The evidence we pro-
vided suggests that the most promising approach for apply-
ing CSIS to multi-speaker experiments may lie in the ability

to cluster speakers into like-sounding groups, which can be
represented by separate low-dimensional CSIS models.
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