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ABSTRACT

This paper introduces a novel adaptive nonlinear beamform-
ing design by using the wide frame of Reproducing Kernel
Hilbert Spaces (RKHS). The task is cast in the framework
of convex optimization. A collection of closed convex con-
straints is developed that describe: (a) the information dic-
tated by the training data and, (b) the required robustness
against steering vector errors. Since a time recursive solution
is sought, the task is equivalent with the problem of finding
a point, in a Hilbert space, that satisfies an infinite number
of closed convex constraints. An algorithm is derived using
projection mappings. Numerical results show the increased
resolution offered by the proposed approach, even with a few
antenna elements, as opposed to the classical Linearly Con-
strained Minimum Variance (LCMV) beamformer, and to a
nonlinear regression approach realized by the Kernel Recur-
sive Least Squares (KRLS) method.

1. INTRODUCTION — PROBLEM
FORMULATION

We consider the system of Fig. 1. The steering vector as-
sociated with a planar wave of wavelength A, arriving to
a Uniform Linear Array (ULA) with an angle 8 € [0, 7],
called the Direction Of Arrival (DOA), is defined as [1, 2]
s = s8(0,d,)) = [1,62”% cosO .
where C represents the complex numbers, i := 1/—1, and
the superscript (-)' stands for vector transposition. The
steering vector corresponding to the Signal Of Interest (SOI)
will be denoted by so, while s; associates to the j-th jam-
mer, Vj € 1,J, for J € Z~o (given integers j1 < j2, define
Jr. g2 = {j1, 51 + 1,...,j2}).

The signal (r(k))rez., (k represents time and Zxg
stands for the nonnegative integers) received by the ULA
is given by

W(N—1)<
7627rz(N DS cosG]t c CN,

J
r(k) = a;b;(k)s; + n(k), Vk € Zxo.
j=0

The complex scalar random processes (b;(k))rezs,, J € 0,J,
denote the symbols carried by the SOI and the jammers. To
keep the discussion simple, we assume that the BPSK mod-
ulation scheme is used so that b;(k) = £1, Vk € Z>o, Vj €
0,J. The complex vector random process (n(k))rez., € CV
stands for the additive noise. The complex coefficients
a; € C, j €0,J, comprise a variety of parameters like the
signal power, channel attenuation, etc. In order to work with
real vectors, a complex vector in CV is mapped to a vector
in R?" (R denotes the set of all real numbers), by using its
real R(-) and its imaginary (-) part.
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Figure 1: A Uniform Linear Antenna (ULA) of N € Zso
elements (Zso stands for the positive integers), and with
an interelement distance d > 0. The beamformer is the
function f which belongs to a Reproducing Kernel Hilbert
Space (RKHS) H. To work with real vectors, a preprocessing
step is applied prior the signal enters the beamformer. To
accommodate general complex input signals, the output of
the beamformer is a two-dimensional real vector such that
its first component corresponds to the real part R(-) and the
second component to the imaginary part S(-) of a complex
number.

Here, beamforming is performed by a function f : R?N —
R. To show that Fig. 1 strictly covers the classical lin-
ear beamforming scenario, we consider here the special case
where [ is linear (more precisely bounded linear). Then, it
is well-known that there exists a unique vector uw € R?¥
such that f(z) = wu'z, Vo € R* (Riesz representa-
tion theorem). If we make the partition u =: [u},ub],
where ui,us € RY, and if we define w = wui + ius €
CY, then one can easily see from Fig. 1 that f(v:1(k)) =
u'vi(k) = ' [R(r k)", S(rk)"]" = R(w*r(k)), and simi-
larly f(r2(k)) = S(w*r(k)), where the superscript * stands
for complex conjugate vector transposition. Hence, the out-
put in Fig. 1 is (w*r(k))r which is nothing but the classical
linear beamforming scenario [1, 2].

In this paper, a more general beamformer is studied. The
function f is assumed to belong to a Reproducing Kernel
Hilbert Space (RKHS) H [3] (see Section 2.1), which offers a
wide variety of options for f: linear, Gaussian, polynomial,
etc. [3].



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

The beamforming problem to be considered here is as fol-
lows. We assume that, due to incorrect a-priori information
or poor array calibration, we are given an erroneous knowl-
edge §o of the SOI steering vector, the received (r(k))x, as
well as the training sequence (bo(k))r. We seek an f € H
such that the output sequence of the beamformer in Fig. 1
stays close to the training sequence (bo(k))« (see Section 3.2),
while at the same time beam-pattern and robustness con-
straints are satisfied (Section 3.1).

Our procedure evolves along three major steps: (a) de-
velop the constraints, (b) form the cost functions, and (c)
optimize via projections. The proofs, which clarify various
theoretical points of the paper, are omitted due to lack of
space.

2. MATHEMATICAL PRELIMINARIES

2.1 Reproducing Kernel Hilbert Space (RKHS).

Henceforth, the symbol H will stand for a generally infinite
dimensional Hilbert space equipped with an inner product
denoted by (-,-). The induced norm becomes |[|-|| := (-,-)/2.
Assume a real Hilbert space H consisting of functions
defined on R™, i.e., f : R™ — R, for some m € Zs¢. Let’s
say m := 2N. The function &(,-) : R®Y x R*" — R is called
a reproducing kernel of H if k(x,-) € H, V& € R*Y, and if
Ve € R*N and Vf € H, f(z) = (f,x(x,-)). In this case, H
is called a Reproducing Kernel Hilbert Space (RKHS) [3].
Celebrated examples of reproducing kernels are i) the
linear kernel (here the associated RKHS is the space
R?Y itself [3]), and ii) the Gaussian kernel w(x,y) :=

exp(—wﬂl), Ve,y € R*N | where ¢ > 0 (here the
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RKHS is of infinite dimension [3]).

2.2 Closed convex sets and metric projection map-
pings.
A subset C of ‘H will be called convex if every line segment
{Afi+ (@ =X)f2: XA €]0,1]}, with endpoints any f1, f2 € C,
lies in C.

Given a point f € H and a closed convex set C C H,
a way to move from f to a point in C' is by means of the
metric projection mapping Pc onto C, which is defined as the
mapping that takes f to the uniquely existing point Pco(f)
of C such that [|f — Po(f)|| = inf{||f — f'|| : /" € C} [4].

3. PROPOSED METHOD
3.1 The set of constraints.

We assume the erroneous knowledge 3¢ of the actual SOI
steering vector sg. It is natural to assume that the actual
so belongs to a neighborhood of $p. An assumption like
this is often met in the robust Capon (linear) beamforming
scenario [2]. Obviously, such an ambiguity neighborhood will
be transfered to our working RKHS H.

Following the preprocessing step of Fig. 1, define the vec-
tors §o1 = [%(go)t,(\}(go)t]t, S02 1= [S‘(go)t,—%(go)t]t. The
mapping which transfers data from the space R to H is
¢(5) := k(§,-). We assume that all the ambiguity, com-
ing from the erroneous knowledge of the SOI steering vec-
tor, can be contained in closed balls with centers located at
k(£S01, -), k(£S502, ), and with radii fixed to a predefined 4.
The + signs, which multiply the vectors o1, 02, are due to
the BPSK symbols.

Our robust approach is to force the beamformer to be-
have in a uniform way over the introduced ambiguity neigh-
borhoods in H. It should produce an output close to the
desired information, i.e., the transmitted by the SOI BPSK
symbols. Recall, now, the fundamental reproducing property
of the RKHS H, stated in Section 2.1, and easily verify that

f(g()l) = <f7 K/(goh )> and f(ﬁog) = <f7 K/(gog, )> If we de-
note by h any point inside the ambiguity neighborhoods, we
impose the following constraints on the desired beamformer

f:
1—e<{f,h)<1+4¢€ Vh € Blx(501,"),9],
—1—e<(f,h) <—-1+4¢€, Vh € B[k(—501,"),9],
—e < <f, h> <e Vhe B[/‘c(ﬁoz, ~),5],
—e < (f,h) <€, Vh € Blr(—502,"),9],

(1)

where Blho,d] stands for a closed ball with center ho and
radius some § > 0. The paramater ¢ is some predefined
nonnegative real number. The first two constraints in (1)
refer to the real part of the beamformer’s output, while the
last two constraints refer to the imaginary part.

For example, let us refer to the first equation of (1),
and let us consider the special case where the point A, in-
side that specific ambiguity area, becomes its center, i.e.,
h := k(§o1,-). Then the desired beamformer f should pro-
duce an output that satisfies 1 —e < f(801) < 1+e€. In other
words, whenever the received signal is r(k) = (41) - 8o, our
beamformer produces an output whose real part is close to 1
and the imaginary part, by the third equation of (1), is close
to 0. Hence, the beamformer produces an output which is
close to the transmitted BPSK symbol [+1,0]*. Constraints
like this are required for any value h in the ambiguity area.
They are often met in the robust linear beamforming scenar-
ios [2], and are usually called distortionless constraints. In
a similar way, the second and fourth relation of (1) refer to
the beamformer’s output whenever the transmitted BPSK
symbol is —1.

The constraints in (1) can be written in a compact form
as follows:

(f,h) < ym, Yh € Blhm,d],Ym € 1,8, (2)

where the symbols {Vn., hm },,c75 are appropriately defined.
For example, 71 := 1+¢, h1 := K(So1,), 72 := —1+¢, ha :=
—k(801,-), etc. The following fact gives a clear geometric
representation of the above.

Fact 1 (/5,6]) The following holds: fer = {f eH:
(f,h) <, Vh € Blho,d]} if and only if 37 € R such that
(f,7) € KNI, where K == {(f,7) e Hx R: ||f|| < 7}, and
L= A{(f,7) e H xR : ((f,7), (ho,0)) =7}

Both of the sets K and II are special cases of closed con-
vex sets, with K being an icecream cone and Il a hyperplane
[6]. In other words, each one of the constraints in (2) can
be dealt as the intersection of an icecream cone and a hy-
perplane in the product space H x R. The solution has to
lie in the intersection of the K and II. We will achieve that
via projections, whose formulae are given by the following
simple rules.

First, we notice that Fact 1 stands for each one of the
eight constraints in (2). As such, we construct the Hilbert
space ‘H x R®, by the product space of H and R® (for each
one of the constraints in (2) add a real component), and by

the inner product {(f1,71), (f2,72))pxre = (f1, fo)n+Ti T2,
Vf1, fo € H, V71,72 € R, We define also the following sets:
the icecream cones and the hyperplanes Vm € 1,8,

Ko ={(f,7) € HXR®: ||f]| € T}, 3)
My = {(f,7) € HxR®:
((fvT)v(hmv[OtvévOt]t» :’VW}v (4)

where T := [11,...,7Tm,...,7s]" € R®, and § appears in the
m-th position of such a vector in (4). Thus, in order to
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achieve robust distortionless constraints, a point (f,7) that
belongs to (},_, (KmNIlLy,) is sought. For all these cases, the
metric projection mappings are analytically (and in linear
complexity) given by: V(f,T) € H x R%, ¥m € 1,8,

(f,7), if ”f” < T,
0, [T1, -+ Tm=1,0,
P, (f,7) =14 Tmits.o,78]), ifIf] < =7m,
(%f, [Tl,...77'm_1,
”f”;“"’" ,Tmt1,---,Ts]'), otherwise,

P, ((f, 7)) = (f,7)
TYm — <f7hm> — Tmd

T 2 + 02

(hm, [0%,6,0"").

These metric projection mappings are used to “push” the
solution in N} _, (Km N1Ly).

3.2 Cost functions: The effect of the training data.

We will use now the information carried by the training se-
quence (bo(k))r and the received signal (r(k))x to form a se-
quence of cost objectives. It turns out that this is equivalent
to an infinite sequence of certain closed convex constraints.
In order to deal with real vectors, we refer to Fig. 1 for the
definition of vi(k) and v2(k). Since we adopt the BPSK
modulation scheme in this paper, the training symbols take
values bo(k) € {£1}, Vk. However, to provide with a com-
pact formulation (see (5)) also for more general modulation
schemes, where complex symbols are used, we define here
Vk € Z>o, bm(k‘) = %(bo(k‘)), and boz(k‘) = g(bo(k))

Our goal is to keep the distance of the beamformer’s
output to the SOI symbols as small as possible. To bound
such distances, we fix an €, and we impose the following
constraints on the distances defined by the output of Fig. 1
and the SOI symbols: {f € H : |f(vi(k)) — ba(k)] < €},
VI € 1,2, Vk € Z>o.

We have already seen in the previous section that in order
to deal with robust distortionless constraints, an augmented
Hilbert H x R® is adopted. Since such a Hilbert space is our
stage of discussion, we have to modify the above constraints
on the training data accordingly. As such, we notice by the
fundamental reproducing property, given in Section 2.1, that
VT € RE, f(w(k)) = (f, w(vi(k),-)) = (f, s(ri(k),")) + T'0 =
((f,7), (k(xi(k),),0)) 1 xrs- Thus, we obtain a sequence of
closed convex constraints VI € 1,2, Vk € Z>o,

Si(k) == {(f,7) e HxR®:
I((f> 1), ((xr(k), ), 0))pexrs — bor(K)| < €} (5)

A closed convex constraint, as in (5), is usually called a hy-
perslab. Our wish is, once more, to “push” our solution in
the intersection of these regions via a series of projections.
To express the associated projection mappings in a compact,
analytic (and in linear complexity) form, we introduce the
following coefficients (the proof is omitted due to lack of

space): Yk € Z>o, and VI € 1,2:

boi(k)—é—(f,r(ri(k),"))
w(ry(k),vr(k)) )
if boi(k) — € > (f, k(vi(k), ),
Bra =0, i Gona(k), ) —ba(R) <6 (6)
bor (k) +é—(f r(ry(k),))
w(ry (k) (k)) ’
if boi (k) + € < (f, s(vi(k), ).

Then, the metric projection mapping Ps, (1) takes the follow-
ing form; Vk € Zso, VI € 1,2, and V(f,7) € H x R¥,

P50 ((f, 7)) = (f;7) + Bra(k(xi(k), ), 0). (7)

Ps, 1y (ur)

Uy,

Figure 2: Illustration of the proposed algorithm (10). For
simplicity, we consider here only two hyperslabs: Si(k),
and S2(k). Concurrent processing on these two hyper-
slabs is achieved by the associated projections mappings
Ps,(xy and Ps,). The set of all convex combinations
2 Ghed wﬁﬁ)Ps,(j)(u) in (8) is denoted by the dotted line.
However, the extrapolation given by the mapping T} takes us
closer to the shaded region which denotes the desired beam-
formers for the time instant k. As time goes by, the hy-
perslabs change according to the incoming sequence of data,

while the distortionless constraints ()3, _; (K N1y, ) remain
fixed.

To summarize, we seek for a point (f,T) in the intersec-
tion of the following infinite collection of closed convex sets:

NSy (Km N Iy) N (N, N7, Si(k)), for let’s say some
nonnegative integer ko.

It is well-known, as in the celebrated Affine Projection
Algorithm [7], that concurrent processing can increase the
speed of convergence of an algorithm. As such, we allow
ourselves the freedom to process also hyperslabs (5) that
correspond to data that have been received in time instants
previous than the current k one. To do so, we introduce the
following index set, which indicates the concurrently pro-
cessed hyperslabs at each time instant k:

e

ifk<qg—1,
ifk>q—1,

where the symbol ji, j2 := {j1,j1+1, ..., j2}, for any integers
j1,j2, where g is a predefined positive integer, and where the
sumbol x stands for the (Cartesian) product operation. To
quantify the contribution of each hyperlab to such concur-

rent, processing, we assign a convex weight w'® to each pair
p g, g g 7,0 p

(4,1) € Jx. By convex weight, we mean that the set {w](fcl)}
satisfies the following constraints: for any pair (j,1) € Jx we

k k
have w](',z) €10,1), and 3= ;yc 7, wg(',z) =1.
For any time instant k € Zx>o, concurrent processing is
expressed by the following mapping:

Tre(u) :=u+ pg Z wj(ﬁ)Pg,(j)(u)—u , Yu € H x R,

(UDETk
(8)

Due to the concurrency, i.e., the multiplicity of the
constraints that are processed at every time instant k,
the relation (8) extrapolates the projections mappings
{Ps,i)}y.nyeq,- The range of the extrapolation parameter
i, which affects the speed of convergence, is calculated re-
cursively within an iterative scheme as follows: given the
current estimate uy € H x R®, jux takes values inside the in-
terval [0, 2My], where My is calculated by the closed form
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(the proof is omitted due to lack of space):

Y Gaeay @8 1P, o) (wr) —uk |1?

My = d IBGeay w®) P, gy (ui) —u |12 ©)
if up, ¢ m(j,l)ejk Su(4)s

1, otherwise.

By the convexity of the function ||-|* and the definition of
M., we can derive that M}, > 1 (see Fig. 2). In general, the
larger the pg, but with ur < 2Mj, the larger the extrapola-
tion step in (8), and thus the faster the convergence speed of
the algorithm. For the special case where Ji contains only a
single element, i.e., Jx := {(jo,l0)}, then we no longer have
concurrency since Ty = PSI() Goy if pe == 11n (8).

3.3 The Algorithm.

Assume an arbitrary initial point wuo := (fo,70) in H x RS,
and generate the point sequence (ux)rezs, = ([, Tk)kezs,
by using the mappings of the previous sections as follows:

Ukt1 := Pry -+ Prg P, -+ - PugTi(uk), Yk € Z>o.  (10)

The relation (10) is a special case of a very recently devel-
oped version of the Adaptive Projected Subgradient Method
(APSM) [4]. Although APSM relies on the same princi-
ples of the celebrated Projections Onto Convex Sets (POCS)
method [8], it is a generalization, since POCS deals only with
a finite number of closed convex constraints.

Under mild conditions, the algorithm (10) strongly con-
verges to a point u. := (fi, %) in H x R® such that f. is the
desired beamformer. It can also be proved that the sequence
of beamformers (fi), takes the following form Vk € Zxo:

8
m=1

(J,)€0F—1xT,2

k .
o r(u(h), ),

where {a$1,, » and {ag.fcl) }i.1k are properly defined real co-
efficients, and the points h, are given in (2). The above algo-
rithm enjoys also several theoretical properties like monotone
approximation, asymptotic optimality with respect to a cer-
tain sequence of cost functions, as well as a characterization
of the limit point u.. Due to lack of space, these properties
and the associated proofs will be presented elsewhere.

3.4 Sparsification.

Looking at the sequence of the estimates produced by the
proposed algorithm in (3.3), it becomes clear that as the time
index k advances, the collections (v;(4)),4 € 0,k,1 € 1,2, and
(a;fl)), j € Tk, 1 €1,2,5 €0, k, must be saved in memory for
keeping track of the functional representation in (3.3). This
leads to an increase, at a linear rate, of the computational
load, which comes in conflict with the limited resources of
real time online settings.

Recent research [9] on such kernel series expansions fo-
cuses on sparsification of the functional representations (3.3),
i.e., on constructing estimates where the number of terms
used in (3.3) is finite. In [10], sparsification was achieved
by forcing every estimate fx, in a classification task, to lie
within a sphere of given radius A > 0 in the RKHS H. In
other words, the estimates were forced to satisfy || fx| < A,
Vk € Z>o. Following this line, and since our working space
is H x R®, we define the following constraint

B:={(f,7) e HxR®:||f| < A}, (11)

which is a closed convex set. Its metric projection map-
ping Pp takes a very simple (with linear complexity) form:
Y(f,T) € H x R®,

(f,7),

Pu((f,7)) = { (<A

it >a (12

(Kl

It can be shown, in a way similar to the one exhibited in
[10], that as time goes by, and as more and more data enter
the functional representation in (3.3), the bound A on the
norm of the estimates f potentially forces the coefficients
corresponding to old data to degrade to zero. In this way,
one can discard old samples, and can introduce a buffer of
finite length L, that keeps only the L, most recent data:

8
Fo=3 a0 + > am(a(). ), (13)
m=1

. L —
(G,Dek— 2 k—1xT12

where {a\%},m.x and {d;i)}j,z,k are some properly defined
real coefficients. Thus, one can add also the projection
mapping Pz to (10), and form the algorithm wugy1 =
Pr, -+ PrgPr, -+ Pug PsTk(uk), Vk € Z>0, for an arbitrary
uo, in order to introduce sparsification to the design.

Considering now all the convex constraints, our goal is
to reach a point

N N Sik) |, (14)

k=ko =1

8
(fe, ) € BN ( N (KmmHm)> N

m=1

where f. is the desired beamformer.

The main reason for introducing a beamforming prob-
lem in a very high dimensional (possibly infinite) RKHS is
to increase the probability of having the intersection in (14)
nonempty, as opposed to standard methodologies that pose
the same problem in finite dimensional Euclidean spaces. A
justification for this rationale will be given in the next sec-
tion, where by only a few array elements we shall be able to
compute effective beamformers in infinite dimensional RKHS
that cannot be obtained in the classical finite dimensional
space framework.

4. NUMERICAL EXAMPLES

In Fig. 1, we let N := 3 with d/X := 0.5. The SOI’'s DOA
is 90°, and the DOAs of five jammers are 30°, 80°, 100°,
130°, 160°. Gaussian i.i.d. noise is used to form the process
(n(k))x. The SNRs are given by 10, 10, 30, 20, 10, and 30
dB for the SOI and the jammers respectively. Alltogether,
the input SINR is —23.26dB. In addition, we assume the
erroneous information of 93° for the SOI’'s DOA. We used
the Gaussian kernel function for working in an infinite di-
mensional Hilbert space (see Section 2.1), with a variance of
0% := 0.5. We choose ¢ := 100 for the index set Jx, and
all the convex weights {wj(.ﬁ) } are set equal to each other for
every time instant k (see Section 3.3). The extrapolation
parameter ux := 1.95My, Vk € Z>o.

We let also € := 0.2, € := 0.2, § := 0.1, and A := 10. The
larger the values of ¢, €, the larger the set of solutions for our
beamformers, while the opposite conclusion holds for §. We
noticed that for smaller values of ¢, ¢, faster convergence re-
sults can be obtained. This becomes a natural consequence,
if we consider the fact that the smaller the solution set be-
comes, the faster we move forward via projections to the
desired region. The parameter A affects the sparsification of
the algorithm. We noticed that the concurrent processing of
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Figure 3: The KRLS shows quadratic complexity O(m3),
where m; is the dimension of a basis (here the average value
of mp is 764.26 with a sparsification criterion vkrrs = 0.5
[9]). The only quadratic complexity burden for the proposed
method, but with respect to the cardinality card(Jx) (here
card(Jx) = 200), is due to the calculation of the quadratic
form appearing in the denumerator of My, in (9). All the in-
troduced projection mappings show a linear complexity with
respect to the number of kernel fuctions in (13), i.e., of order
O(Ly).

the proposed method behaves in a stable and uniform way
for a wide interval of A values.

The total number of training data to be used was set to
500 and a separate 100 test data were used to validate the
obtained results and to calculate the corresponding SINRs.
The buffer length L, was set to 500, i.e., half the number
of the training data since at each time instant k the re-
ceived r(k) is mapped to v;(k), I € 1,2. For each realization
of the experiment, we calculate the root mean squared dis-
tance of the beamformer’s output to the test data, and the
array beam-pattern. We performed 100 realizations and uni-
formly averaged the results. The proposed method (denoted
by APSM) is compared to the classical Linearly Constrained
Minimum Variance (LCMYV) beamformer [1,2], where per-
fect knowledge of all of the DOAs is available, and the non-
linear regression approach realized by the Kernel Recursive
Least Squares (KRLS) algorithm [9].

In Fig. 3, the average root mean squared distance of the
beamformer’s output to the test data is depicted. Recall that
in the BPSK constellation, the desired symbols are placed at
points [£1,0]" in R?. The linear approach of LCMV performs
poorly since it needs more array elements (N = 3 here) to
deal with the given number J (= 5) of jammers. In Fig. 4,
we design the corresponding beam-patterns. The LCMV ap-
proach exhibits a very wide main lobe so that it cannot sep-
arate the jammers located close to SOI's DOA of 90°, i.e.,
at the angles 80°, 100°. Indeed, it shows only an average
output of SINRLcmv = —20.21dB as compared to the large
improvement of SINRapsm = 18.65dB offered by the APSM
approach. Moreover, since the KRLS performs only nonlin-
ear regression, and does not incorporate any other design
constraints, it shows inability to control the beam-pattern,
which can lead to unpleasant effects, e.g., amplification of
the jammer located at 160°. As a result it exhibits a very
low negative SINR value.

5. CONCLUSIONS

This paper presented a novel adaptive nonlinear beamform-
ing method in Reproducing Kernel Hilbert Spaces (RKHS).
To overcome the limitations and to enhance the capabilities
of the array against noise and multiple jamming signals, we
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Figure 4: The KRLS offers unconstrained nonlinear regres-
sion, so it shows inability to control the beam-pattern of the
ULA as in the convexly constrained optimization approach
of the APSM. The linear approach of LCMV needs more
antenna elements to produce a narrower main lobe.

use a reproducing kernel function to implicitly transfer the
beamforming problem from the standard Euclidean space to
a very high dimensional RKHS. Convex analysis is used to
formulate a convexly constrained minimization problem in
that implicit space. A solution is given by a very recently de-
veloped projection-based minimization tool. The exhibited
numerical results show that, without increasing the array el-
ements, a low complexity convexly constrained design in the
implicitly defined RKHS gives solution in cases where the
classical linear solution does not, and outperforms a recently
developed kernel Recursive Least Squares technique.
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