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ABSTRACT

In this paper, we describe a method to infer 3-D scene infor-
mation using a single view captured by an omnidirectional
camera. The proposed technique is inscribed in the so called
“Shape from Texture” problem : if the textures hold by 3-D
surfaces respect some a priori models, the deformation due to
their projection in the image contains both local information
about surface depth and orientation.

To estimate this deformation, we adapt the work of
Garding and Lindeberg to the case of spherical images pro-
cessing. The planar multiscale procedure allowing the def-
inition of precise texture descriptors is here replaced by a
multiscale representation compatible with the compactness
of the sphere. More precisely, the multiscale representation
is obtained by filtering the data by dilated copies of a mother
function. The spherical dilation introduced is the gnomonic
dilation, a simple variation of the stereographic dilation due
to Antoine and Vandergheynst. This dilation has a simple in-
terpretation in terms of projective geometry. It fits precisely
the transformation that the apparent omnidirectional image
of an object follows when the distance of this object to the
sensor changes. A spherical texture descriptor, close to a de-
formation tensor, is then defined thanks to the use of simple
filters that act as smoothed differential operators on the data.

Results are provided in the analysis of a synthetic exam-
ple to illustrate the capacity of the proposed method.

1. INTRODUCTION

Recovery of 3-D scenes from vision sensors is generally
performed using “shape cues” from the processing of the
recorded data. It is generally accepted that efficient geometry
assessments are performed by multiple sensors setup, from
stereoscopic systems emulating biological vision, to more
numerous sensors set with complex geometric treatments.

It is however possible to estimate 3-D scene geometry
from a single view if the observed objects surfaces are tex-
tured and if the textures respect some basic stationary prop-
erties. Indeed, in that case, their projections on the image
induces deformations altering this property. Assessing this
deformation gives then clues on surface distance and orien-
tation.

For that purpose, Lindeberg and Garding have for in-
stance designed a multiscale texture descriptor for planar
camera images. This one is related to a first order integro-
differential operator close to a perfect 2x2 deformation ten-
sor. The scale at which this operator gives a maximal re-
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Figure 1: (a) A catadioptric imaging system. (b) Scene ge-
ometry [3].

sponse and its eigenvalues at this scale contain both informa-
tion on the distance and on the surface orientation.

There is an interest in developing the same theory for om-
nidirectional images such as those recorded by catadioptric
cameras. In robotic systems for instance, the motion of an
autonomous device can be driven by computer vision and
by 3-D shape cues, such as texture deformations, obtained
by image processing. However, planar cameras are severely
limited in their field of view. In order to obtain an image of
an entire scene and improve the localization awareness of the
system, either multiple or rotating cameras must then be used
(2].

An interesting alternative way to enhance the field of
view is to use mirrors in conjunction with lenses. A parabolic
catadioptric sensor is an example of such a system [1]. It is
realized as a parabolic mirror which is placed in front of a
camera approximating an orthographically projecting lens as
depicted on Fig. 1(a). In such a case, the ray of light incident
with the focus of the parabola is reflected to a ray of light
parallel to the parabola axis. This construction is equivalent
to a purely rotating perspective camera.

In [2], it is proved that there is an equivalence between
any central catadioptric projection, like in the system above,
and a composition of two conformal mappings on the sphere.
The spherical coordinates of any incoming light rays can then
be recovered through a simple inverse stereographic projec-
tion of the sensor images.

In the rest of this paper, we assume that this geometri-
cal conversion has been realized and that the recorded image
lives on the sphere S2. In other words, we work with om-
nidirectional intensity image (gray level) I : > — R, which
associates to any point @ = (68, ¢) € S? the intensity /(®).
Notice that 6 € [0, 7] with 8 = 0 identified with the North
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pole, and @ € [0,27).

2. SCENE DEFORMATION MODEL

We follow the mathematical framework defined by Garding
in [3] for the characterization of the projection from the real
world scene on a 2-D image. Consider the perspective map-
ping from a surface .# C R3 in the 3-D scene to the unit
view sphere S? with focal point (the center) assumed at origin
(Fig. 1(b)). In each view direction @ € S? linked to the vec-
tor p € R3, we can define a local orthonormal system (5,7, B)
The vector 7 is the tilt direction, i.e. a vector parallel to the
gradient of the distance r(®) = r(p) from the focal point to
 in direction @, and b = p x 7.

The perspective backprojection F : S?> — ./ is linked to
the distance function r with F (@) = r(w)p. We write here-
after ¢ = F(®) € .#. The derivative of F, i.e. its linear
approximation dFy,, is a mapping from the spherical tangent
plane T,S? on @ to the surface tangent plane T, . We de-

note by T and B the normalized backprojection of 7 and b on
F(w). It is proved in [3] that the linear mapping dF, from

TyS? in the base (7,b) to T,.# in the coordinates of (7, B)

reads
_(r/cosc 0\ _ (1/m O
de—( 0 r>_( 0 1/M>’ M

where © is the slant angle, i.e. the angle between the normal
N of . on point F(®) and the view direction .

The interpretation of the inverse eigenvalues m < M of
dF,, is the following : a unit circle drawn on .# is mapped
by F~! on the view sphere S to an ellipse of minor and major
axis in direction 7 and b with lengths m and M respectively.
In parallel, there is a relation between areas in Ta,S2 and in
T,.# : a unit area element in the later has an area of mM in
T,S?. The mapping dF, contains thus essential knowledge
about the geometry of the surface .# .

3. MULTISCALE TEXTURE DESCRIPTOR
3.1 Planar Legacy

As explained in [3], the main principle of a “shape from tex-
ture” procedure is to estimate the mapping dFy above from
the only available information, i.e. from the recorded image
intensities, using a priori surface texture models [4]. Linde-
berg and Garding introduced the (windowed) second moment
matrix y; for flat gray level images /(x) as the 2 x 2 tensor

i) 2 [ (VI50) (VIG0) wily =) d.

In that definition I(x;¢) = (g, *I)(x) is a smoothed copy of
I by a gaussian kernel g (x) = (27t%) " exp(—||x||?/(2¢?))
of local scale t > 0, V is the usual 2-D gradient, and
ws(x) = s72w(x/s) is a symmetrical window of integration
scale s > 0. The explanation of the design and of the behav-
ior of yy is the following. First, it is based on a scale-space
extension of the original image, i.e. I(x,z). This scale-space
is a “probing” of the image content at different scale 7. It
has also the advantage of stabilizing the computation of the
differential operator V, if computed for instance by finite dif-
ference.

Practically, the scale ¢, or local scale, has to be selected
to the typical size of the basic pattern elements generating
the texture. The integration scale has a different role. It gath-
ers sufficient statistics of the texture gradient. In particular,
it turns the rank-1 matrix (VI(x,t)) (VI(x,t))" into a poten-
tially rank-2 matrix ;. A possible choice for s is s = y¢, with
Y set to 2 or 3, i.e. the texture is assumed made of elements
(texels) gathered at y times their typical size.

Interestingly, if the image domain undergoes some in-
vertible linear transformation B, I(x) = R(z) with z =
Bx, it can be shown that w(x;t,s) = BT ug(z:t,s)B,
with pr related both to the scale-space R(z,t) of fil-
ter g/(z) = (detB) 'g,(B~'z) and to the window w/(z) =
(detB)~'ws(B~'z). This simple fact creates a bridge be-
tween a texture on the surface and the projected texture on
the planar sensor.

Indeed, if around ¢ = F(®) the object surface is locally
well approximated by its tangent plane 7;,.#, the texture pat-
tern .7 (z) on .4 ~ T,/ , with z expressed in the system
(T,E), undergoes a linear transformation given by the in-
verse of By = dF,dG,, where G : R? — §? is the mapping
projecting the planar sensor coordinates to the spherical do-
main, i.e. @ = G(x). If By is almost constant on small scales,
Uy is then conjugated by B, to a similar second moment ma-
trix it computed directly on 7;.# from the painted texture
pattern, i.e. 17 (x;t,5) = BI w7 (z;t,5)B,.

3.2 Spherical extension using gnomonic dilation

Since we are working here with image intensities I assumed
to be directly available on the sphere, we need to define a
specific spherical texture descriptor. Scale-space and gradi-
ent operator have thus to be replaced by their spherical coun-
terpart.

Let us precise first some concepts proper to spherical data
processing. The natural inner product between two functions
u and v on the sphere reads (u,v) £ [ u*(®)v(®)dQ, where
(-)* denotes the complex conjugation and dQ = sin 0d6d¢ is
the usual rotation invariant measure on S>. The L? norm of
u is linked to this inner product by ||u||*> £ (u,u). The set of
finite energy functions on 2, i.e. L?(8?) = {u: |ju|| < o}, is
the natural Hilbert space of S? with the product (-, -).

Correlation between two functions # and v on the sphere
can be defined by (uxv)(p) = (Rpu,v) [5, 6], where R,
is the rotation operator described by the three Euler angles
p =(9,0,x) = (w,) thanks to the factorization Ry , =

RyR, R, where R% is a rotation of angle v around the axis
ker3.

Filter dilations on S? have to be introduced carefully due
to the compactness of this space. We use a variant of the
stereographic dilation [7, 6] that we call the gnomonic dila-
tion. Tt is represented by the operator D : L*(S%) — L*(S%),
with S% the North hemisphere! of S2. This later is defined by
[Du)(w) = A(,0)/>u(6,-1,9), with tan6, = rtan6. Ge-
ometrically, this dilatation amounts to project u in the tan-
gent plane to the North pole using the gnomonic (or cen-
tral) projection II, dilates there the projected function with
the usual planar dilation d;, such that d,u(x) = t~'u(x/t),

I'This dilation does not act injectively on the whole sphere. This has no
effect in our application since, as described after, the projective geometry of
the 3-D scene is compatible with this hemispheric restriction.
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Figure 2: (a) Point A of latitude 6 is sent to B in the tangent
plane to the North pole N. Point B, at distance d from the
origin, is sent to B’ at distance ad by planar dilation of factor
a. B’ is then projected back to the sphere on A’ at latitude 6,.

(b) The filter y, =IT"' & ¢.

and finally projects back with IT~! the result on the sphere,
ie. D, =I17'4,I1. Fig. 2(a) explains this dilation geomet-
rically. The projection IT: L?>(R?) — L*(S%) is an isom-
etry. ie. it preserves the L? norm of the function af-
ter projection. Mathematically, it is such that [ITu](r, @) =
(1+72)73/*u(tan" r, @) for u € L*(S%) and r = tan 6.

The factor A(¢,0) = ti(ﬁ%fﬂ

allows the preservation of the L* norm, i.e. ||Dyul| = |ju/. A
L' normalized variant D, of this dilation operator exists sim-
ply by replacing 2'/2 by A in the dilation definition so that
| Deully = |Jull1 £ [s |u(®)|dQ. From their definitions, for
small angles, gnomonic dilations D, and D, converge to their
planar dilations counterparts (Euclidean asymptotic property

[7D.
Thanks to all these concepts, we are ready now to pro-
pose the following texture descriptor,

, named cocycle,

w(@'i9) = [ 1) (@.0) RoroDorl(@) 42 @)

The L! normalized dilation D, has been selected for the scal-
ing of the window w to preserve the statistical meaning of the
integration scale s. The choice of an L? normalized dilation
in the definition of J is explained in Section 4.

The vector J = (Jg,Jo)” is the vector formed by the com-
ponents

Jg((l),l) £
S

(Drys) +1) (@,0)
Jo(o,1) ( )

((Diyy)+1) (@,0).

The vector J is the spherical counterpart of the smoothed gra-
dient vector VI of the planar texture descriptor. It is linked
to two particular filters y,(®) and y,(®) corresponding to
the gnomonic backprojection of the x and y derivatives of a
Gaussian g in the tangent plane to the North pole [6], i.e.
Y =I1" % cand y, =IT"! (%g. The first filter is presented

on Fig. 2(b). Since these filters are moved after dilation” by
D, on the point @ in (3), it is easy to prove that the;y are ori-
ented according to the vectors &g = (sin8)~![(@72) ® — 2]
and &, = (sin0) '@ x 2 respectively. Since (¢g,é,) is an
orthonormal basis of 7,82, J is thus a smoothed measure of
the gradient of 7 on T,,S.

2This simple fact makes our analysis invariant under rotation of the data.

Figure 3: Gnomonic dilation and projective geometry.

To go further in this interpretation, recall that the pla-
nar gradient V is related to directional derivatives of any

differentiable function u through 3‘97’; =&l Vu, where ¢, =
(cosa,sina)” is a unit vector in the direction . The vector
J possesses a similar property. If y, = 17! ;75; =T1"'el vg,
since IT and D, are radial, Jo(®,t) = (D,yy *I)(@,0) =
él J(w,t). This observation is related to the extension of
steerability on the sphere, thanks to the radiality of the pro-
Jjection IT [8, 6].

Let us conclude this section by noticing that the
gnomonic dilation has a nice compatibility with the projec-
tive geometry linking any 3-D scene to its spherical appar-
ent image. Indeed, by construction, the gnomonic dilation
is nothing but the transformation that obeys the omnidirec-
tional image of an object when only the distance of this lat-
ter to the sensor is changing. Figure 3 helps visualize this
principle. Let us take a thin object O at distance d; from
the view sphere S2. This object spans a solid angle o on
$? and has an apparent width 7 in the tangent plane T2,
ie. rp =tancoy. The same object placed at distance ds
and denoted now by O’ corresponds to an apparent width
rp =tanop = (dy /dy)tanoy = (dy/dy)ri, and @ is therefore
the gnomonic dilation of ¢ by a factor d; /d, < 1.

It seems then clear that if I and I’ are the images of O
and O’ respectively, some “characteristic” (gnomonic) scale
of the elements of / around direction @ has to be multiplied
by the same factor d; /d; to correspond to the characteristic
scale of I’ around the same direction. We use this principle
in the next section to develop a surface depth estimator.

4. AUTOMATIC SCALE SELECTION AND DEPTH
ESTIMATION

In [9], when s = 71, it is proved that the determinant or the
trace of the planar texture descriptor reaches a maximum at
characteristic texture scales if the derivatives are normalized
according to V/ =t V. This effect is then used to select auto-
matically the scale 7 = fmax (x), where fmax is the scale where
either det y; or trace iy is maximum.

We use here the same scale selection using only the de-
terminant. However, in (2), the derivative renormalization is
not required since we select an L normalization of the filters
in J. This choice, at least for small scales, amounts to mul-
tiply an L! normalization by #, having the same effect than
the planar derivative normalization. Our texture descriptor is
thus fully equivalent to the planar one with renormalization
of its derivatives.

Consequently, thanks to the heuristic argument given in
Section 3.2 linking gnomonic dilation and local depth, we
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use

H(0) 2 fna(@),
as an estimator of the depth r(®w). We define also
A

the characteristic second moment matrix as W (w) =
.ul(wvtmax(a))v ytmax(w))~

Notice that the estimator 7 is biased as soon as the ob-
ject surface is not perpendicular to the view direction, i.e.
for o # 0. Indeed, in that case, the isotropic averaging real-
ized implicitely by py is not realized on the same texture el-
ements since, as seen in the next section in equation (4), the
surface slanting induces anisotropic deformations of the ap-
parent texture. A better estimator would have thus to correct
this anisotropic effect. However, the price of that correction
would be a higher computational time since extra parameters
must be introduced in the texture descriptor. For that rea-
son, we will keep 7 remembering that it corresponds to a first
order guess of the true depth r.

5. TEXTURE MODELS AND SLANT ESTIMATION

As shown above, our texture descriptor is asymptotically
equivalent to the planar texture descriptor of [9] for small
scales. Indeed, since the supports of Dy, and D; y, are well
localized around their centrum, in that case the gnomonic
dilation is close to planar dilation thanks to its Euclidean
asymptotic property described in Section 3.

Using the notations introduced in Section 2, if we assume
that the differential map dFy, is roughly constant at the typi-
cal scales of the texture variations, then

w(w) = dF) pz(q) dFy, 4

where ¢ = F(w). With this assumption, the two texture
models described in [9], namely weakly isotropic (WI) and
constant area (CA) hypothesis, can be used.

Weakly Isotropic Textures : This hypothesis assumes that
the texture displays roughly the same behavior on .# what-
ever is the point and the direction where we look at it. This
leads to assume (5 (g) = cId for a certain constant ¢ > 0. In
that case, (4) leads to (@) «< dF. dF,,. Eigenvalues of dF,,
are then proportional to the square root of the eigenvalues
0 < A < A; of y(®). Therefore, the slant estimator of the

WI hypothesis is cos 650 (@) 2 /A2 (@) /A1 (o).

Textures of Constant Area : For this case, the texture
is assumed to present a less restrictive behavior : the lo-
cal size of the texture elements, and thus also detu s, is
almost constant on .#. Therefore, from (4), detp; (@) =

det 17 (q)(detdFy)?, and mM = [detpz(q)/det i (o)] 12,

Defining A; = (dety;)~!/2, the CA hypothesis implies then

'%I = V%T) = —tano (3 - ”:’T/ €9}, where the last geo-

metric equality is proved in [3] and where the gradient is the
spherical gradient. The two quantities k; and T are the nor-
mal curvature and the torsion of the surface in direction T
respectively. If those are very small, e.g. for very smooth

. . A VA
surfaces, the CA slant estimator is | tan 6., = %w

6. ALGORITHM AND IMPLEMENTATION

Our algorithm estimates shape informations from textures,
i.e. distance r and slant angle o from the texture descriptor

ty. The integration window is set to w = IT~! g where g is the
planar Gaussian of Section 3.1, while the integration scale
s = yt, with y = 3. The algorithm is summarized by the
following steps :

1. Fix a range of scale [fp,7;] C R’ where to take 7.

2. Compute py(w;z,7vt), #(®) and ().

3. Using y;(®), compute 65, and 6, according to the tex-
ture model selected.

Some explanations have to be provided about the compu-
tation of i, i.e. about the computation of correlations on S?
between a signal [ and filters Yy, W, and w in a discretized
formalism. We follow the numerical procedure explained in
[5].The intensity / is sampled on an equiangular grid ¢ of
N x N pixels (here N = 512). Functions on the sphere can be
decomposed in the orthornormal basis of Spherical Harmon-
ics (SH) that plays the same role than the Fourier basis on
flat spaces. Band-limited functions on the sphere, i.e. such
that SH coefficients are zero after a cutoff frequency, can be
sampled on an equiangular grid without loss of information.
For isotropic filters, a correlation/convolution theorem exists
expressing correlation as the inverse SH transform (ISHT)
of the product of the SH transforms of the signal and of the
filter. If the filter is anisotropic (e.g. W and V), this prod-
uct is actually a matrix product and the ISHT has to be re-
placed by an inverse Wigner transform (IWT). On equian-
gular grids SHT and ISHT can be computed very quickly,
i.e. in O(N?1log? N) using the S2Kit? C library. IWT can be
also computed rapidly using the SOFT? C libary. Additional
speedup are available thanks to the special structure of
and yy (i.e. in cos @ or sin @). These filters are indeed steer-
able of order 1 [8, 5] and this property makes the correlation
computed by the matrix product of the Wigner transforms
limited to few non-zero matrix slices.

7. EXPERIMENT

As a simple experiment, we study the recovery of the geom-
etry of a cube painted with a black and white checkerboard
(Fig. 4(b)). This object is seen from inside by a perfect om-
nidirectional camera placed on one of the median lines ex-
actly at half distance between the cube center and one of its
face (Fig. 4(a)). This non-symetric situation improved the
challenge of the estimation compared to that of a camera
placed at the origin. The omnidirectional view is presented in
Fig. 4(c). This synthetic scene and its omnidirectional view
have been generated using Blender*.

Figure 4(d) presents the estimation #(®) of the depth in
every direction @. Without calibration, this estimation is of
course valid up to an unknown multiplicative constant. It
seems clear that the center of the faces are correctly local-
ized. As described in Section 4, the bias of 7 induces errors
as soon as the slant in non trivial. The estimator has also
some trouble to estimate depth close to face junction since
two different texture behaviors are mixed in these regions
due to the filters size.

Figures 5(a-d) present the results of the slant estimations.
The absolute value of the true slant is displayed in Fig. 5(a).
The results of the WI and CA slant estimation (Figs 5(b) and

3 SOFT and S2Kit are based on [10], see http://www.cs.
dartmouth.edu/~geelong/
“http://www.blender.org.
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Figure 4: (a) 3-D scene sketch. The small sphere repre-
sents the camera location. (b) Blender perspective view of
the cube. (¢) Omnidirectional vision of the camera (d) Esti-
mated distance.

5(c)) show that in both situations the accuracy is fairly good
except again on the face junction areas, as shown in the dif-
ference map between WI slant and the ground truth. Careful
inspections of the relative errors between WI and CA slants
and the true slant show that the CA hypothesis works better
when the true slant is small, while globally the MSE between
WI slant and the ground truth is slightly lower than for CA
slant.

8. CONCLUSION

This paper has explained how to obtain 3-D shape informa-
tion from textures in the particular context of omnidirectional
image processing. The presented results demonstrate the ef-
ficiency of our mathematical tools in a controlled synthetic
situation. Experiments on real world images have still to
be realized. Our paper however proves that 3-D shape cues
from textures can be derived from data delivered by omni-
directional vision systems. A realistic and efficient system
providing a complete 3-D scene recovery from real omnidi-
rectional views would have to combine our texture treatment
to other indications, e.g. cues from object occlusions, blur-
ing due to the link between depth and out-of-focus object,
motion parallax, stereo vision cues, ...
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