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ABSTRACT

We address the problem of source separation in echoic and
anechoic environments, with a new algorithm which adap-
tively learns a set of sparse stereo dictionary elements, which
are then clustered to identify the original sources. The atom
pairs learned by the algorithm are found to capture infor-
mation about the direction of arrival of the source signals,
which allows to determine the clusters. A similar approach
is also used here to extend the dictionary learning K singu-
lar value decomposition (K-SVD) algorithm, to address the
source separation problem, and results from the two methods
are compared. Computer simulations indicate that the pro-
posed adaptive sparse stereo dictionary (ASSD) algorithm
yields good performance in both anechoic and echoic envi-
ronments.

1. INTRODUCTION

In recent years, sparse signal decompositions and dictionary
learning techniques have often been applied to the problem
of source separation, when dealing with mixtures arising
from real environments [1]. Since the main underlying
assumption with this type of techniques is the sparsity of
the sources in some domain, they are sometimes collectively
denoted as sparse component analysis (SCA) [2]. The aim
of SCA is to solve the source separation problem by a
multi-stage procedure, that typically involves the following
four steps [2]. Firstly, apply a sparsifying transform to the
observed data, in order to move to a domain where the
sources are sparse. Secondly, estimate the mixing. This
step often consists of clustering the transform coefficients
based on techniques such as K-means, and it relies on the
sources not overlapping (or almost not overlapping) in the
transform domain. Thirdly, find the source representation
using, for instance, binary masking. Fourthly, reconstruct
the sources by inverting the sparsifying transform. The first
step in the above procedure is of particular interest here. The
signal is to be transformed into a domain where the sources
are sparse, and therefore it is expected that, in this domain,
the signal representations of the sources do not overlap [3].
Orthogonal sparsifying transforms such as the short time
fourier transform (STFT) is often used in this stage, but
fixed or learned overcomplete dictionaries are acquiring
popularity.

We address the source separation problem according to
the procedure described above, using a new adaptive sparse
stereo dictionary learning algorithm in the first stage of
SCA. The algorithm that we propose is based on a greedy

approach, learning a dictionary of stereo atoms from both
channels simultaneously [4]. The method maximizes the
L2-norm of the data, re-arranged into frames, while mini-
mizing its L1-norm, hence seeking dictionary elements that
are sparse, as well as yielding sparse representations for the
signals. Moreover, the transform is forced to be orthogonal
by removing all the components lying in the direction of a
particular vector, corresponding to the selected data frame,
at each iteration. Thus, the inverse transform is evaluated via
multiplication by the transpose of the dictionary matrix.

The K-SVD dictionary learning algorithm in [5] is also
used, in this paper, to address the source separation problem,
as part of the first stage of SCA, and its performance is
compared to that of the proposed ASSD-based separation
algorithm. The structure of the paper is as follows: the
problem that we seek to address is outlined in Section 2, and
our proposed sparse stereo adaptive dictionary algorithm
for source separation is introduced in Section 3. K-SVD is
described in Section 4, where it is also extended to source
separation. Finally, experimental results are presented in
Section 5, while conclusions are drawn in Section 6.

2. PROBLEM STATEMENT

The convolutive blind audio source separation problem arises
when an array of microphones records mixtures of a set of
sound sources s(n) that are convolved with the impulse re-
sponse between each source and sensor. When 2 sources and
2 microphones are present, the signal recorded at the i-th mi-
crophone, x;(n), is
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where s;(n) is the i-th source signal, a;;(/) denotes the im-
pulse response from source j to sensor i, and L is the max-
imum length of all impulse responses. The aim of source
separation is to find estimates for the unmixing filters w;; (1),
using only the sensor measurements, and to reconstruct the
sources from
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where y;(n) is the j-th recovered source.

3. PROPOSED SEPARATION METHOD

In this paper, we address the source separation problem based
on the SCA procedure, as follows:



1. Reshape the observed signal vector x(n) € R, into a
matrix X.

2. Apply a sparse dictionary learning algorithm to learn
stereo atoms from the two mixtures.

3. Cluster the learned atom pairs.

4. Reconstruct the sources.

In [6] we used a gradient-based sparsifying independent
component analysis (ICA) algorithm, but this was very slow,
even on relatively small frame sized of 512 samples. We
now replace this with a new, much faster, greedy algorithm
to perform this transform.

The first step entails stacking samples pairs of the ob-
served stereo data, as described in [6], and dividing the
resulting data into blocks of overlapping data frames, re-
sulting into the matrix X(n), containing the stereo mixture.
Reshaping the data in this manner allows the modeling of
both correlations between microphones, and correlations
across time. The remaining steps are detailed below.

3.1 Learning the stereo atoms with ASSD

We seek to learn an L x L dictionary from the signals, x; €
RZ, in the columns of the newly formed matrix X, so that x;
can be represented as [7]
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where ' is an atom in the dictionary, a,ﬁ, l=1,...,L are

the expansion coefficients which encode explicit information
regarding the properties of the signal x;, depending on the
choice of dictionary 2, and L < nipax.-

The proposed algorithm adaptively learns a data de-
pendent dictionary by sequentially extracting the columns of
the matrix X. It is inspired by the idea of setting each new
atom equal to the column of X that satisfies:

max M (4)
Il
where ||-||; and ||-||> denote the L1- and L2-norm respec-

tively. Thus at each iteration, the method reduces the energy
of the data by a maximum amount, across all frames, while
ensuring that the L1-norm is reduced by a minimum amount.
In practice, the L1-norm is not re-normalized at each step,
and therefore 4 is strictly achieved only for the first atom.
The proposed ASSD algorithm solves the maximization
problem in equation (4) according to the steps outlined
below.

Initialization: At iteration j =1

e ensure that the columns of X have unit L1-norm
_ X
R

Xk
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where x; the k-th column of X. This leads to a new data
matrix X, whose columns now have unit L1-norm. The
superscript’, used hereafter, denotes the normalized ma-
trix and its columns;

e set the residual matrix

R’ =X (6)
where R/ = [r{, e
column vector corresponding to the k-th column of R/.
Repeat, for all atoms to be extracted:
1. Compute the L2-norm of each frame
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2. Find the index k corresponding to the signal block with

largest L2-norm, r£

vy ] andr] € RFmax is a residual
max
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where IK = {1,...,kmax } is the set of all indices pointing
to the columns of R/.
Ateach iteration j € {1,..., L}, the residual vector with high-
est L2-norm, r'lé, becomes a dictionary element, and all resid-
ual vectors ri decrease by an appropriate amount, determined
by the selected atom W/ and the coefficient of expansion oc,{ .

3. Set the j-th dictionary element W/ to be equal to the
residual vector with largest L2-norm r/;
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4. Evaluate the coefficients of expansion, given by the inner
product between the residual vector ry, and the atom v/
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5. Compute the new residual, by removing the component
along the chosen atom, for each element k in ri
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The term in the denominator of J—"V’” in equation (11), is

included to ensure that the coefficient of expansion oc,{ cor-

responding to the inner product between the selected atom

y/ and the frame of maximum L2-norm ré, is normalized

to 1. Then, the corresponding column of the residual matrix
R/ is set to zero, since the whole atom is removed. This
step ensures that the transform is orthogonal, hence resulting
in a relatively simple source reconstruction step in the SCA
procedure, as we shall see in section 3.3.

3.2 Clustering the atom pairs

Having learned a set of L atom pairs l}ll@, 1={1,...,L}, one
for each source i = 1,2, we cluster them together into subsets
corresponding to each source to be separated, according to
their time delay, or direction of arrival (DOA). This is done
by finding the time delay 7; between the atoms in each pair /,
using the generalized cross-correlation with phase transform
(GCC-PHAT) algorithm [8]
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where ‘P,(1>(a)),‘l’,(2>(w) are the Fourier transforms of the

atom pairs l[l,m and 1[152) respectively. The function R;(T)
typically exhibits a single sharp peak at the lag correspond-
ing to the time delay between the two signals, which is
consistent with the learned atom pairs exhibiting a dominant
DOA.

The atoms are subsequently grouped using the K-means
clustering algorithm. The time delay ‘centroid’ 7;, i = 1,2
corresponding to each source is found, and we define the
index sets

h={1(Ti-8) <7 <(i+A)} 13)

corresponding to the atoms with delays within some thresh-
old A of the cluster centroid, reserving a ‘discard’ cluster

for atoms that will not be associated with any of the i sources.
Thus, in the space of reshaped vectors x;(n), a subspace

Er=span{y), l€y},i=12 (15)
corresponding to each source is defined.

3.3 Reconstructing the sources

To reconstruct the original sources, two mask matrices
HY, j = 1,2 are defined as

HO = diag(n\", ..., n\") (16)

with the diagonal elements of H( set to one or zero depend-
ing on whether a transform component is considered to be-
long to the subspace E; corresponding to the i-th source. the
mask values given by
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for [ =1,...,L. Then, the estimated image }2((1) of the i-th
source is given by
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Finally, we use the reverse of the process described in section

. ; ; T
3 to find the source image %) (n) = [)?@ (n),)?g> (n)} , that is,

the vector of images of the i-th source at both microphones.
We refer to this SCA-based source separation algorithm as
ASSD-SS.

4. SOURCE SEPARATION WITH K-SVD

The K-SVD algorithm learns an overcomplete dictionary, un-
der the constraint that the signal representation is sparse. K-
SVD attempts to minimize the following expression [5]:

min{[|Y — DX |2} subject to Vi, ||x;llo < Tp (19)

where Y, X and D are the signal to be approximated, the co-
efficient matrix, and the dictionary matrix, respectively; || - ||

Algorithm 1 The K-SVD algorithm, reproduced from [5].

Task: Find the best dictionary to represent the data samples
{yi}Y, as sparse compositions, by solving

IBI}I{’I{HY—DXH%} subject to Vi, ||xi|lo < T

Initialization: Set the dictionary matrix D©) € R"*K with ¢2
normalized columns. Set J = 1. Repeat until convergence
(stopping rule):
e Sparse Coding Stage: Use any pursuit algorithm to com-
pute the representation vectors x; for each example y;,
by approximation the solution of

i=1,2,...,N, min{||y;—Dx|[5} subjectto ||x;]|o<Tp
X

e Codebook Update Stage: Foreach columnk=1,2,... K
in DV~ update it by

— Define the group of examples that use this atom, wy =
{ilt <i<N, xk(i) #0}.

— Compute the overall representation error matrix, Ey,
by

Ek =Y - Z d/X]T
JFk

— Restrict E; by choosing only the columns corre-
sponding to @, and obtain EF.

— Apply SVD decomposition Ef =UAV!. Choose
the updated dictionary column dy to be the first col-
umn of U. Update the coefficient vector xk to be the
first column of V multiplied by A(1,1).

e SetJ=J+1.

is the Frobenius norm, and || - ||o is the I° norm, counting
the nonzero entries of a vector. Unlike typical algorithms,
the dictionary design and signal decomposition are not con-
ducted separately. Rather, the two steps are performed si-
multaneously by alternatively fixing the dictionary and find-
ing a signal decomposition, and then updating the dictionary
matrix D one column at the time, while allowing the expan-
sion coefficients to change in this stage [5]. The coefficient
update stage can be performed using any approximation pur-
suit method, as long as the solution has a fixed and prede-
termined number of nonzero entries, hence imposing a very
strong sparsity constraint. In [5], the authors select orthog-
onal matching pursuit (OMP), as they found the overall al-
gorithm to be more efficient. The dictionary update stage is
based on the singular value decomposition of the represen-
tation error matrix Y — DX, and more precisely, K singular
value decomposition computations are performed, each de-
termining a column of the dictionary matrix. A detailed de-
scription of the K-SVD algorithm, reproduced from [5], is
given as Algorithm 1.

Source separation is performed based on the SCA procedure,
as in section 3, but with the dictionary learned with K-SVD
replacing that from the ASSD algorithm. The remaining
steps are as outlined in section 3. We refer to the resulting
source separation algorithm as KSVD-SS.
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Figure 1: Examples of the atoms pairs learned with the
ASSD transform (upper plots) and with the K-SVD algo-
rithm (lower plots). The value 1 denotes the position of the
atom within the dictionary.

delay = 9 samples

delay = 9 samples

Figure 2: Example of an atom pair learned with the ASSD
algorithm (upper plot) and with the K-SVD method (lower

plot).

4.1 Computational complexity

Since the two separation methods differ only in the dictionary
learning algorithm, it is sufficient to compare the complexity
of ASSD and K-SVD. The most computationally expensive
step in the ASSD algorithm is the evaluation of the coeffi-

cients of expansion in equation (10). Evaluation of OC,{ , for

a residual ri of length kmax and an atom W/ of length L,
is O(Lkmax) for each iteration j € {1,...,L}, thus resulting
in an overall complexity of O(L?kyax). The K-SVD algo-
rithm entails performing K (or kpyax in the case discussed
here) computationally intensive singular value decomposi-
tion ste;z)s. In general, the complexity of the SVD transform
is O(Lkg,.x )» and this had to be applied kmax times, each cor-
responding to a column of the dictionary matrix, thus giving
a computational complexity of O(Lk},,.). Note that, since
the atoms are extracted from the columns of R/, their num-
ber is at most equal to kmax, i.6. L < kmax, and therefore
O(LK%,,) < O(LKk} ). In the next section, we will see what
these computational times correspond to in real time when
performing computer simulations.
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Figure 3: Plot of the time delays estimated for ASSD-SS and

KSVD-SS, under anechoic (upper plot), and echoic (lower

plot) mixing.
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Figure 4: Plot of the histogram of the time delays estimated
for ASSD-SS and KSVD-SS, under anechoic (upper plot),
and echoic (lower plot) mixing.

5. EXPERIMENTAL RESULTS

Some of the atoms obtained with the proposed ASSD
algorithm, when two male speech signals were synthetically
mixed in the presence of only time delays (anechoic mixing),
and with delays of 9 and -11 samples, are shown in the
upper part of figure 1. The sources and sensors had the same
layout as in [6]. They were obtained using a frame length of
N = 1024 samples for ASSD, and an overlap of T = 1014
samples. Examples of the atoms generated by K-SVD, using
the parameters selected in [5] are shown in the lower part of
figure 1. In both cases, the atoms capture characteristics of
the speech signals. In particular, many of the atoms learned
with ASSD were found to be quite localized. Figure 2 shows
a zoomed in view of a typical example of an atom pair of
length 1024 samples, learned with the ASSD (upper plot)
and K-SVD (lower plot) algorithms, from the same stereo
mixture described above. The plots illustrate that the learned
atom pairs encode information about the time-delay and
amplitude differences in the mixing channel. This suggests
that each atom pair relates to a particular source.



Reverberation | Method | SAR | SIR [ SDR | | Reverb. | Method | Source | SAR | SIR | SDR |
0 msec ASSD-SS | 2.8 | 141 | 22 160 msec | KSVD-SS | sourcel | 1.9 | 114 | 1.2
KSVD-SS | 13 | 138 | 0.8 source2 | 52 | 19.6 | 49
160 msec ASSD-SS | 2.6 | 144 | 22 Tuble 2: Obiect " ¢ KSVD.SS for the t
able 2: Objective performance o - or the two
KSVD-5S 3.5 155 3.0 sources, averaged across the sensors.

Table 1: Objective performance of ASSD-SS and KSVD-SS.
All values are expressed in decibels (dB).

Next, the two methods proposed here were used to
separate the sources in the anechoic mixture case, and
when reverberation of 160 ms was present. The position
of the sources and sensors was such that the direction of
arrival of the source signals corresponded to delays of 9
and -11 samples in the anechoic case, and 10 and -8 in
the case of convolutive mixtures. The performance of the
two algorithms was evaluated using the objective criteria
of Signal-to-Distortion Ratio (SDR), Signal-to-Interference
Ratio (SIR) and Signal-to-Artefacts Ratio (SAR), as defined
in [9]. The SDR ratio measures the difference between an
estimated source and a target source, allowing for possible
linear filtering between them; for this reason, we allowed
for time-invariant filtering of filter length 1024 samples
when calculating SDR. SIR and SAR measure, respectively,
the distortion due to interfering sources and other artefacts.
Table 1 shows the values obtained for the two methods, and
the single figures for all sources were obtained by averaging
the criteria across all microphones and sources. Figure
3 shows the time-delays estimated with the GCC-PHAT
algorithm, for the ASSD-SS and KSVD-SS methods, for the
anechoic and convolutive mixing cases, while in figure 4 the
histograms of the estimated time-delays are compared.

It can be seen that in the anechoic case both methods
correctly identify the direction of arrival of the two sources.
The objective measures indicate that ASSD-SS gives better
separation results overall, with low interference from the
other source, and fewer artefacts. It is also interesting to
note how the behavior of KSVD-SS in particular changes
in the presence of reverberations, when fewer atoms are
assigned to the source with a delay of 10 samples. However,
the histogram in figure 4 shows that most atoms are assigned
to the other source. The objective measures in Table 1
seem to suggest that this is an advantage, with KSVD-SS
outperforming ASSD-SS in this case. Nonetheless, if we
look at the objective measures for each source, averaged
over the sensors, shown in table 2, we find that for the source
from direction -8 samples (source 2 in the figure), KSVD-SS
performs better than in the anechoic case, while for the other
source, performance is poor.

Finally, the speed of learning of KSVD-SS was found to be
quite slow, as discussed in section 4.1. In our simulations for
the experiments described above, conducted on a Pentium
IV at 3.4GHz, using Matlab Version 7.0.4 (R14SP2), and
under the Microsoft Windows XP operating system, the
computation time for ASSD-SS was about 17 minutes (1036
sec), while the KSVD-SS algorithm required more than 3
hours (12650 sec), that is, separation with ASSD-SS was
over 10 times faster than with KSVD-SS.

6. CONCLUSIONS

We have presented a source separation algorithm that ad-
dresses the problem for echoic and anechoic environments,
based on a sparse component analysis type approach. The
ASSD-SS method uses a novel adaptive stereo sparse dictio-
nary learning algorithm that finds atom pairs simultaneously
from the two channels. A similar method using K-SVD for
the dictionary learning step was also considered, and it was
found that ASSD-SS is faster than the latter. Both algorithms
were found to correctly identify the direction of arrival of the
sources, and to separate them both in anechoic and echoic
mixing conditions.
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