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ABSTRACT
Embedded speaker recognition in mobile devices involves a
limited amount of computing resource but also is linked with
several ergonomic constraints. For example both the enrol-
ment and the test have to be done using short audio se-
quences. Even if they proved their efficiency in more classi-
cal situations, GMM/UBM based systems show their limits
in this context.
This paper deals with this problem and proposes to take
into account the linguistic nature of the speech material
inside the GMM/UBM framework. The proposed solution
mixes the text-independent aspects of the GMM/UBM with
a semi-continuous like approach in order to deal with the
text-dependent information. This system respects both the
resource and the ergonomic constraints of the considered ap-
plication field.
The preliminary experiments are done on the publicly
available database ValidDB and show the potential of the
proposed approach. Particularly, when compared to the
GMM/UBM, our approach decreases drastically both the
computational cost and the equal error rates when impos-
tors don’t know the user passwords. For other situations the
performance remains comparable between both approaches.

1. INTRODUCTION

An embedded speaker recognition system, in cellphones for
example, has to respect several constraints. Computational
and memory resources are limited and the ergonomic aspects
of a realistic application impose to train the models with few
data and to perform on short test audio sequences. Classi-
cal speaker recognition engines work on text-independent in-
puts and follow usually the GMM/UBM (Gaussian Mixture
Model/ Universal Background Model) paradigm [1]. This
solution allows a high level of performance as shown dur-
ing NIST evaluations [2]. Unfortunately, the UBM/GMM
performance depends strongly on the quantity of training
data available to enrol a speaker when the embedded con-
text involves short duration speech material. A solution to
this problem is to increase the amount of information taken
into account by the system by including text dependencies,
like in user-customized password scenario [3]. In this case,
the Temporal Structure Information (TSI) gathered from the
password helps to compensate the short duration of the au-
dio sequences. In order to model the TSI of speech while
achieving statistical modelling, a word recognition system
could be combined with a speaker recognition system [4].
To satisfy the targeted application constraint, the sys-
tem should accept all kinds of passwords and also be
language-independent. Adding language options when using
a phoneme-based word recognition system would seem viable
with a good set of phonemes covering languages. However
this solution would be expensive in terms of storage.
A cellphone-embedded system is confronted with strongly
variable environments. Due to this constraint the acoustic

modelling used in the recognition system has to be adapted
to the environment and the computational cost of the adap-
tation has to follow the targeted context resource constraints.
HMM modelling doesn’t seem well suited as it requires a
large amount of training data and a significant resource con-
sumption.
The solution proposed in this paper tries to associate the
well known advantages of a GMM based statistical acous-
tic modelling with an original architecture able to deal with
the application context constraints. It uses the GMM/UBM
paradigm for the general acoustic space modelling and the
text-independent speaker recognition abilities. It also in-
volves an HMM/Viterbi approach in order to incorporate
the text-dependent and TSI aspects. Such a combined sys-
tem was originally proposed in [5] for speaker recognition
and extended to word recognition in [6].
The specific three stage architecture is described in Section
2. The method using this structure to reduce memory and
computational costs and the enrolment algorithms are also
described in this section. The experimental protocol and
preliminary results are described in Section 3 as well as the
Valid database [7]. Section 4 summarises the benefit of this
approach and presents different future work directions.

2. DESCRIPTION OF THE APPROACH

The proposed system combines a statistical representation of
the acoustic space and a precise modelling of the TSI. Based
on a semi-continuous hidden Markov model (SCHMM) [8],
it operates a three stage acoustic modelling architecture. In
order to involve the TSI with the respect of training data and
resources limits, a GMM which represents the acoustic space
is derived to obtain the SCHMM state probability functions.

2.1 EBD Hierarchical Architecture

Figure 1 illustrates the proposed three stage hierarchical ar-
chitecture, denoted EBD, for Embedded LIA_SpkDET [9]
system in this paper. All the nodes in this architecture are
a GMM. The upper layer is the least specialised one and is a
classical UBM. It aims to model the general acoustic space.
The middle layer contains the text-independent specific char-
acteristics of each speaker. These text-independent speaker
models are obtained by a classical GMM/UBM adaptation
method: each speaker model is derived from the UBM fol-
lowing the Maximum A Posteriori (MAP) criterion [10] and
using the EM algorithm. Only the mean parameters are
adapted and the other parameters are taken from the UBM.
The bottom layer uses the ability of a left-right SCHMM
in order to capture the text-dependent information. Par-
ticularly the SCHMM takes into account the TSI of the
user-customised passwords. Each of the SCHMM states is
a GMM derived from the corresponding middle level model.
The transformation function works only on the weights of
the GMMs, the other parameters are directly taken from
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Figure 1: General view of the EBD model architecture.

2.2 Training Step
The training algorithm is decomposed into three steps, cor-
responding to each level of the EBD architecture:
• The upper level UBM is firstly trained to model the

largest part of the acoustic space. It is built off-line us-
ing a large amount of data. The UBM is trained with a
classical EM/ML algorithm as described in [1], [11].
• The text-independent speaker model training consists in

adapting the UBM/GMM with the whole available data
pronounced by this client. An energy labelling is per-
formed on the signal and only the speech frames are kept.
Using the selected frames, the final model is obtained by
adapting the means of the UBM thanks to an EM algo-
rithm with the MAP criterion.
• In order to catch the TSI of the password, a SCHMM

is learnt. Contrary to the speaker dependent GMMs of
the second stage, all frames of the password - and not
only speech frames - are used to adapt the S states of the
SCHMMs. The password sequence is cut in S segments
{segi} of the same length. Each state i of the SCHMM
is adapted from the speaker text-independent model us-
ing segi to modellise a subpart of the password. An
EM/MAP algorithm is applied on only the weight param-
eters. Then the SCHMM is optimised thanks to a clas-
sical Viterbi algorithm (a new segmentation is achieved
by Viterbi and is used to adapt the state models). The
number of states, S, of the SCHMM is experimentally
determined. Finally, the transitions of the SCHMM are
computed using the relative length of each segment.

2.3 Testing Step
During a test phase, the score between the input signal and
a password SCHMM model is issued from the correspond-
ing Viterbi path. All the input frames are used during this
Viterbi decoding phase. The log-likelihood of a frame se-
quence could be expressed as a sum of two log-likelihood ac-
cumulations, one using speech-labelled frames and the other
using non-speech-labelled frames, as shown in expression 1.

log p(X|λ) = log p(Xspeech|λ) + log p(Xnon−Speech|λ) (1)

The final speaker matching score corresponds to the log-
likelihood computed with only the log p(Xspeech|λ). This
score is normalised by the log-likelihood computed using the
UBM model on the same speech-labelled frames.

2.4 Respect of the Resource Constraints
In order to evaluate our approach in terms of memory con-
straints and computational cost, the EBD system is com-
pared to baseline systems. The memory occupation of the

EBD system is evaluated by considering the number of stored
parameters. Indeed this paper does not consider data com-
pression and coding which are both mandatory for a such
embedded application. In this context the memory estima-
tion in terms of megabytes does not make sense. The com-
putational cost is estimated from the number of operations
associated with the function f(y,G), where f(y,G) is the
log-likelihood computation function for an acoustic feature
y and a monovariate Gaussian G.
The EBD system lies at the limit between speaker and speech
recognition systems and could be compared with two systems
working in parallel. We use this decomposition and we com-
pare our system to both a classical speech recognition engine
and a classical speaker recognition system.

2.4.1 Speaker Recognition

As described in 2.1 the EBD system has a hierarchical archi-
tecture. The first and the second layers of this architecture
present the same structure as a classical text-independent
speaker recognition system. This part of the EBD system
has then the same characteristics in terms of computational
cost and memory resources as this standard GMM/UBM
system. As in classical approaches the memory and compu-
tational resources are already minimized by tying parameters
between the UBM and the speaker models and by comput-
ing only the n-top Gaussian. Considering a system with 128
Gaussian components per model, 32 acoustic coefficients and
5 speaker models, the number of stored parameters is 28 800
and for each input frame, 24 576 log-likelihood computations
are done. We adapt all the mean parameters in this work,
an additional gain is possible in both memory and comput-
ing by adapting only a subpart of the parameters or with a
Gaussian selection [12].

2.4.2 Speech Recognition

The main benefit comes from the speech recognition part of
the EBD system. As the two first layers are equivalent to
a UBM/GMM speaker recognition system, the third layer
should be compared to a speech recognition system. The
main constraint of this application comes from the possi-
bility of the users to choose their own password without
any limitation. The system used should also be vocabulary-
unconstrained. State-of-the-art speech recognition systems
are mainly related to statistical methods like Hidden Markov
Model and phonemic models [6]. In this sense, two ap-
proaches are compared with the EBD system.
The first one is a phonemic based approach using non-
contextual models which requires significant memory re-
sources. For an acoustic model with non-contextual
phonemes there are 128 distributions per state, each with 32
acoustic coefficients. The acoustic model contains 108 emit-
ting states. The number of trained passwords has a negligi-
ble effect and the memory occupation in terms of parameter
numbers could be approximated by only the acoustic model
size:

nbes× nbg × (2× vectsize+ 1)| {z }
oneGaussian

(2)

where nbes is the number of emitting states, nbg is the num-
ber of Gaussian components and vectsize is the number of
acoustic features. The computational cost of this part is a
supplement to the speaker recognition task. The likelihood
of each distribution of the acoustic space model is computed
for each acoustic feature of the test data. For the system
previously described, the computational supplement consist
in computing 13, 824 log-likelihood per acoustic feature.
The second approach is a global HMM for each password.
For one password trained by one speaker, we estimate the
acoustic model size (in terms of number of parameters) as
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follows:
stnb× nbg × (2× vectsize+ 1)| {z }

oneGaussian

(3)

where stnb is the number of states of the HMM. The compu-
tational cost (in terms of log-likelihood number) is estimated
as follows:

stnb× nbg × vectsize (4)

When linking speaker recognition and password recognition
with SCHMM in the EBD system, only the weight param-
eters are needed for a given state, the other parameters are
tied to the upper level GMM. For one password trained by
one speaker, this system only requires the storage of very
few parameters:

stnb× nbg × 1 (5)

The computation of the Gaussian component log-likelihoods
is done in the speaker recognition part of the architecture.
By adapting only the weights of the Gaussian distributions,
the speech recognition task only requires weighted combi-
nations which makes the computational cost of this system
negligible compared to the baseline systems. The memory
occupation for the EBD system is proportional to the num-
ber of passwords but would be very small compared to the
baseline systems for the targeted application.
Table 1 shows the required resources of the 4 systems for
5 speakers, 2 passwords per speaker, 15 states per password
(for the HMM and EBD system), 128 Gaussian distributions
and 32 acoustic parameters. (It is also possible to tie some
parameters between models for each system; this optimiza-
tion is not taken into account here.)

Number of
parameters

Number of
log-likelihood
computations

Speaker Recognition +
Phonemic Model 927, 360 442, 368

Speaker Recognition +
Password HMMs 1, 276, 800 614, 400

EBD 33, 600 24, 576
Speaker Recognition 28, 800 24, 576a

aThe cost of the weighted means is neglected.

Table 1: Evaluation of the memory (in terms of parameters)
and computational resources (in terms of log-likelihood com-
putation) of EBD and two baseline systems per input frame

3. EXPERIMENTS ON VALID-DB

3.1 Valid Database
The experiments are performed on the Valid Database [7].
This database contains audio-video records from 106 speak-
ers: 77 men and 29 women. Based on the XM2VTS linguistic
content, two occurrences are recorded in 5 sessions for each of
these speakers. The first one - denoted in this paper DIGIT
- is a sequence of digits : "5 0 6 9 2 8 1 3 7 4" and the
second - denoted in this paper SENTENCE - is the same
phonetically well-balanced sentence as in M2VTS "Joe took
father’s green shoe bench out".
The five sessions are recorded over a period of one month.
The first session is a clean one (this session is recorded under
controlled acoustic and illumination conditions). The other
four sessions are recorded in a real world scenario without
any control on illumination or acoustic noise.
The Valid database was chosen as we aim to include the
video stream in the system, despite its small size. However
Valid presents several drawbacks for our work. The sen-
tences are too long for a real password dedicated system and

only two different sequences are recorded. Moreover, these
sequences are too different (digits vs. sentence) to represent
realistic passwords. Finally, the number of speakers is small
for a speaker verification experiment. In order to withdraw
the gender mismatch problem, only male sessions have been
used in this work.

3.2 Protocol
The 77 male speakers are separated into three sets: the
UBM-set with 25 speakers, the CLIENT-set with 25 other
speakers, and the IMPOSTOR-set with the 27 remaining
males.
As indicated by the set names, the UBM-set is used in
order to train the UBM model, the Client-set is used to
enrol the client speakers and for the true access and the
last set, the impostor-set is only used for the impostor
trials. Three background models are computed using the
UBM-set of speakers. The UBM-DIGIT is learned on the 5
DIGIT sessions of the 25 ubm-speakers, UBM-SENTENCE
is learned on the 5 SENTENCE sessions of the UBM-set of
speakers. Finally, a third UBM model, UBM-ALL is learned
with the 5 sessions of both occurrences.
The UBM models are learned using the noisy and the clean
sessions but the clean sessions are no longer used in the rest
of the protocol as only one clean session is available per
speaker.

Starting with the three UBMs, eight conditions are de-
fined:
• 1occ-DIGIT : in this condition, each client model is de-

rived from UBM-Digit using one noisy DIGIT occurrence
of this speaker. Due to the small number of speakers
available in the database, a jacknifing process is used by
learning a client model on each available noisy DIGIT
occurrence. Of course, the used training occurrence will
not be used for the true speaker access. This process
gives 100 speaker models (25 speakers, 4 noisy DIGIT
occurrences).
• 1occ-SENTENCE : respectively, 100 speaker models are

derived from the UBM-SENTENCE using the noisy
SENTENCE occurrences. The same jacknifing process
is used.
• 2occ-DIGIT : each client model is now trained using two

DIGIT noisy occurrences of one given speaker and the
UBM-DIGIT. The jacknifing process selects all the two
from four combinations in order to give six models of the
original speaker and a total of 150 speaker models (25
speakers, 6 couples of noisy DIGIT occurrences).
• 2occ-SENTENCE : respectively, 150 speaker models are

defined using UBM-SENTENCE and the noisy SEN-
TENCE occurrences.
• 1occ-all-DIGIT : this condition is the same as 1occ-DIGIT

but using the UBM-ALL instead of UBM-DIGIT.
• 1occ-all-SENTENCE : this condition is the same as 1occ-

SENTENCE but using the UBM-ALL instead of UBM-
SENTENCE.
• 2occ-all-DIGIT : this condition is the same as 2occ-DIGIT

but using the UBM-ALL instead of UBM-DIGIT.
• 2occ-all-SENTENCE : this condition is the same as 2occ-

SENTENCE but using the UBM-ALL instead of UBM-
SENTENCE.
The number of target accesses per condition is constant

for all the above eight conditions. 300 target accesses are
defined. For 1occ-X conditions, 100 target models are com-
pared to the three available test sequences (four noisy occur-
rences are available for each password, one is used in order
to train the speaker model, the three remaining ones for the
client accesses). For 2occ-X conditions, 150 target models
are compared to the two available test sequences.
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The impostor tests are computed using the IMPOSTOR-set
of speakers. Two configurations are proposed:
• PASSWORD: in this configuration, the linguistic content

of the impostor test sequences is the same as the oc-
currences used to train the client models. Each speaker
model of the Xocc-DIGIT and Xocc-all-DIGIT sets is
compared to the four noisy DIGIT occurrences of each
of the 27 speakers of the IMPOSTOR-set. Respectively,
each speaker model of the Xocc-SENTENCE and Xocc-
all-SENTENCE sets is compared to the four noisy SEN-
TENCE occurrences of each of the 27 speakers of the
IMPOSTOR-set.
• WRONG: in this condition, the linguistic content of the

impostor test occurrences is different to the one of client
models training material. Each speaker model of the
Xocc-DIGIT and Xocc-all-DIGIT sets is compared to
the four noisy SENTENCE occurrences of each impos-
tor speaker. Respectively, each client model of the Xocc-
SENTENCE and Xocc-all-SENTENCE sets is compared
to the four noisy DIGIT occurrences of each of the 27
impostor speakers.

For both configurations, the number of impostor tests is con-
stant for a given client model. However, the global number
of impostor tests performed depends on the selected client
condition:
• 1occ-X and 1occ-all-X conditions are composed on 100

client models. These conditions give 10, 800 impostors
accesses (27 impostor speakers, four noisy occurrences of
the chosen linguistic content for each of the 100 client
models).
• 2occ-X and 2occ-all-X conditions give 150 client models.

It gives 16, 200 impostor accesses (27 impostor speakers,
four noisy occurrences of the selected linguistic content
and 150 client models).

The EBD and the baseline systems are developed using the
ALIZE toolkit [9].

3.3 Parametrization

Mel-scaled frequency cepstral coefficients (MFCC) are used,
computed every 10ms. An energy labelling is applied to sepa-
rate the speech frames from the non-speech frames. Acoustic
feature frames are 32-dimension vectors, 15 cepstral coeffi-
cients, the log-energy and the corresponding ∆ coefficients.

3.4 Results

Firstly, we wish to evaluate the influence of the number of
components of the GMM models on the EBD system over-
all performance. Figure 2 shows the performance of the

Figure 2: EER for GMM and EBD 5-state systems against
GMM size (1-occ-Sentence, both WRONG/PASSWORD im-
postor tests)

EBD system with five states against the number of com-
ponents in the GMM, from 8 to 1, 024. The performance
is evaluated in terms of EER using UBM-ALL, SENTENCE
and both PASSWORD and WRONG conditions (1occ-all-
SENTENCE plus PASSWORD and WRONG impostor con-
ditions). The performance of the baseline UBM/GMM sys-
tem is given for comparison. The experiment shows that a
sufficient number of components is 64 to achieve a good level
of performance for both systems. Due to the small amount
of available training data, the performance reaches a maxi-
mum when the number of components is about 256, which
is similar to the observations made by [13]. In the configura-
tion retained for the rest of the experiments, the other fixed
parameters are:
• dimension of GMMs is fixed to 256 and all mean parame-

ters of the text-independent speaker models are adapted.
• 32 weight parameters are adapted for each SCHMM state
The main expected advantage of the EBD system compared
to a classical UBM/GMM is to incorporate the password-
based information like the password itself and the relative
TSI. This point is evaluated by the experiments presented in
the Tables 2 and 3. These tables present the performance

Client Set GMM
baseline

Number of states of EBD
5 10 15

1occ-Digit 2.33 2.67 2.35 2.33
1occ-Sentence 1.67 1.33 1.27 1.00
1occ-all-Digit 1.30 1.67 1.32 1.00

1occ-all-
Sentence 0.38 0.08 0.02 0.03

Table 2: EER of GMM and EBD systems (with different
number of states) - WRONG test configuration

Client Set GMM
baseline

Number of states of EBD
5 10 15

1occ-Digit 1.96 2.02 2.64 2.67
1occ-Sentence 2.00 1.73 2.93 3.27
1occ-all-Digit 1.74 3.02 3.59 3.35

1occ-all-
Sentence 2.00 2.33 3.67 4.41

Table 3: EER of GMM and EBD systems (with different
number of states) - PASSWORD test configuration

Client Set GMM
baseline

Number of states of EBD
5 10 15

1occ-Digit 1.96 2.02 2.64 2.67
2occ-Digit 1.00 1.00 1.00 1.27

1occ-Sentence 2.00 1.73 2.93 3.27
2occ-Sentence 0.73 0.42 1.00 1.28
1occ-all-Digit 1.74 3.02 3.59 3.35
2occ-all-Digit 1.05 1.67 1.95 1.68

1occ-all-
Sentence 2.00 2.33 3.67 4.41

2occ-all-
Sentence 0.92 0.73 1.34 1.99

Table 4: Comparison of EER with one and two training
occurrences - WRONG test condition

of the EBD system depending on the number of states and
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the nature of the impostor tests. The performance of the
baseline GMM in the same conditions is provided for com-
parison. It is important to note that the GMM system is
equivalent to an EBD system with only one state. Table 2
(WRONG condition) shows a clear advantage for the EBD
system when the impostors do not know (pronounce) the
speaker passwords. Increasing the number of states from
one to 15 allows a continuous gain in terms of EER. This
result is not confirmed by Table 3 where the impostors know
the target speaker passwords. A loss of performance is ob-
served when the number of states increases. It seems that,
in the speaker matching score, the TSI shadows the speaker
specific information, i.e. the password is recognised and not
the speaker. A solution to this problem is to increase the
amount of speaker specific information in the EBD model,
for example by adding several training occurrences during
the speaker enrolment. In order to investigate this possi-
bility we propose a similar experiment to the previous one
but with two occurrences of the speaker password during the
training phase. Table 4 presents the results using the PASS-
WORD condition, depending on the number of training oc-
currences (one or two) and on the number of EBD states.
As expected, the performance improves when the amount of
training data increases, for all conditions. More interesting
is the comparative behaviour of the GMM system and EBD
system. The EBD system gains more from the increase in
training data than the GMM, even if the GMM performs
generally better than the EBD. This result indicates clearly
that the balanced problem between text-content information
and speaker specific information could be solved by adding
more training occurrences during the speaker enrolment. For
the WRONG conditions, the same behaviour is noticed.

4. CONCLUSIONS AND FUTURE WORKS

We present a new acoustic architecture for a password-
dependent speaker recognition dedicated to embedded ap-
plications. The proposed approach associates the advan-
tages of a text-independent GMM/UBM system with an
HMM/Viterbi-based text-dependent system. It follows both
the ergonomic constraints like the small amount of train-
ing data and the computing resource constraints. The pre-
liminary experiments demonstrate the password recognition
abilities of EBD, even if a very small amount of training data
is provided. Even if a large decrease in EER was observed
for several experimental conditions compared to a GMM, the
results have to be validated on a larger database as Valid is
limited for a speaker recognition task.
Future work will focus on the TSI by exploring the ratio be-
tween passwords and the number of states of the EBD model.
We aim also to incorporate TSI from a second modality like
the video stream in order both to increase the performance
and in an attempt to thwart replay attacks.
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