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ABSTRACT

In this paper we investigate biometric person identification.
We model this process of person identification as multiple
hypothesis testing and consider performance measures that
can be attained in such a protocol in terms of exponents
of average error probability. A special attention is paid to
the privacy related issues. In particular, we consider per-
formance/privacy trade-off due to the indirect identification
that is based on data projection of an original data to a secret
subspace. Finally, we approximate the obtained performance
limits using properties of random projections. Finally, exper-
imental simulations are used to exemplify our findings.

1. INTRODUCTION

Biometric person identification has become an unavoidable
security feature serving as a basis for person identification
and access control. Being a replacement of classical security
tokens as passwords, pins, ID cards or passports, physical or
behavioral features of humans have certain advantages. The
major one concerns their inherent link with a user and thus
infeasibility to be stolen, forgotten or lost. They are capa-
ble as well of providing sufficient accuracy of identification
procedure in terms of producing an error during identity veri-
fication. Finally, biometrics are omnipresent, easy to acquire,
sufficiently permanent and universal in the sense that are in
possession of all people.

Despite the mentioned advantages, one should carefully
address the question of biometric storage. In many proto-
cols (like those that are used to grant the access to laptops,
mobile phones, and portable hard drives) it is necessarily to
store the original biometric template. Thus, via gaining the
physical access to the device, the attacker can obtain the ac-
cess to the mentioned original template that leads to various
security and privacy compromised issues. Possible ways of
such illegal actions are creating of faked biometrics, system
impersonalization, or even illegal people tracking. A detailed
review of biometric template security can be found in [1] and
references therein.

This security fraud was recently realized [2] and sug-
gested to formulate the problem of biometric-based authen-
tication as extraction of “common randomness” [3, 4] that
is performed using the fundamentals of distributed source
coding [5]. However, this approach assumes the availability
of the original biometric template as a secret shared by dis-
tributed encoder and decoder. Thus, one can conclude that
the realized security hole is not completely overpassed. At
the same time, the use of hashes increases the probability of
collisions.

Thus, the main goal of the paper consists in the anal-
ysis of biometric-based person identification from a joint
performance-privacy/security perspective. We propose, in-
stead of using original biometric templates for identity veri-
fication, to perform indirect identification based on their pro-
jection to a secure key-dependent transform domain. The
role of the projecting operator is twofold: besides enhancing
the security of the identification protocol, it is used for ac-
complishing computational complexity improvement via in-
put data dimensionality reduction. Moreover, the analog of
identification system was not considered. A complementary
motivation of our research concerns the claim made in [6]
that use of random projections lead to a drastic performance
loss.

The security/privacy issue of random projections in
terms of information leakage was addressed in our previous
work [7]. Therefore, in this paper we will mostly consider
the impact of random projections on performance.

The remaining part of the paper is organized in the fol-
lowing way. The problem under investigation is formulated
in Section 2. Performance analysis of the identification pro-
tocol based on random projections is analysed in Section 3
versus direct identity verification. Section 4 contains exper-
imental validation results. Finally, Section 5 concludes the
paper and draws some future extensions of the obtained re-
sults.

Notations. We use capital letters to denote scalar ran-
dom variables X , bold capital letters to denote vector ran-
dom variables X, corresponding small letters x and x to de-
note the realizations of scalar and vector random variables,
respectively. The superscript N is used to denote length-N
vectors x = {x[1],x[2], ...,x[N]} with ith element x[i]. We use
X ∼ pX (x) or simply X ∼ p(x) to indicate that a random vari-
able X is distributed according to pX (x). Calligraphic fonts
X denote sets X ∈ X and |X | denotes a cardinality of set.
Finally, IN denotes a N×N identity matrix.

2. PROBLEM FORMULATION

A general diagram of identity verification based on secure
biometrics and random projections is presented in Figure 1.

According to the presented set-up, the template identities
are deduced during the enrollment stage based on the origi-
nal template X∼ p(x) transformed to a secret key-dependent
reduced dimensionality domain via applying a random pro-
jection operator Φ. These sequences xi, i ∈ {1,2, ...,M} are
stored in the corresponding identification data base that is
available at identification stage. The maximal amount of
such indexes is limited by the maximum rate of reliable com-
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Figure 1: Person identification based on random projections:
Φ is a key-dependent random projection operator.

munications of the corresponding discrete memoryless chan-
nel (DMC) p(y|x) that models the acquisition distortions.
According to the channel coding theorem [8], M ≤ 2NI(X ;Y ).

For the identity verification the template Y acquired from
the output of p(y|x) is projected to the mentioned secrete key-
dependent transform domain Ỹ = ΦY. Finally, a statistical
test η is applied to decide which template out of M = 2NI(X ;Y )

alternatives is observed by the identity verification system.
As it was indicated in the introductory part of the paper,

the main our goal is to evaluate the system performance in
terms of identification accuracy and computational complex-
ity impacted by the random projection. For this purpose, we
model the problem of person identification as multiple hy-
pothesis testing [9] and formulate it for the direct identifica-
tion case where Φ = I. In particular, it is supposed that a
source of biometric signals represented by a probability dis-
tribution p(x) produces a length N vectors X ∈ X N . The
principle goal of the hypothesis test is to decide, which out
of M possible cases is observed. We define an M-ary mul-
timodal biometric person identification system as composed
of the set X N and a hypothesis test:

η : X N →{1,2, ...,M} , (1)

where {1,2, ...,M} is a collection of possible alternatives.
The test is accomplished assuming the following prior

distributions on respective hypotheses:

Hi : X ∼ pi(x) = N (x(i),σ2
ZIN), (2)

where i ∈ {1,2, ...,M}, Hi ∼ pi(x) = ∏N
j=1 pi(x j), and the

acquisition channel is modeled as i.i.d. Gaussian with zero
mean and variance σ2

Z .
We measure the performance of the defined M-ary hy-

pothesis testing using Bayesian average probability of error:

C(η) =∑
i
πi∑

j �=i

PE
i j , (3)

where η designates a selected decision rule, PE
i j stays for the

probability of falsely accepting hypothesis Hj in the case
when Hi is in “true” and πi is the prior probability of the
hypothesis Hi.

We define the respective exponent of this average proba-
bility of error as follows:

θ(η) = lim
N→∞

− 1
N

logC(η). (4)

Theoretical performance analysis of multiple hypothesis
testing for the case of more than two hypotheses under the
selected performance criterion of the average probability of
error was found intractable [10, 11]. Instead of direct prob-
lem analysis, usually it is tackled exploiting some strategies
that simplify the further analysis and considerations. One
of such simplifications was firstly introduced in [11], where
for the sake of analysis tractability the multiple hypothesis
testing was replaced by a set of binary tests (Figure 3). It is
known that in this case, the optimal decision rule follows the
multiple maximum a posteriori (MMAP) strategy:

ηMMAP = arg max
i∈{1,2,...,M}

πi p
i(x). (5)

In the forgoing analysis we assume that prior hypothesis dis-
tribution, πi = 1

M , is uniform and MMAP rule will be simpli-
fied to multiple maximum likelihood (MML) decision rule:

ηMML = arg max
i∈{1,2,...,M}

pi(x). (6)
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Figure 2: Multiple hypothesis testing (a) vs its approximation
by a set of binary tests (b).

It was demonstrated [11] for the memoryless case that
θ(ηMMAP) is upper bounded as:

θ(ηMMAP) ≤ θ(ηMAP) ≤ D∗, (7)

where θ(ηMAP) designates a MAP detector for a binary hy-
pothesis testing formulation and:

D∗ = min
(m,n)∈{1,2,...,M},m�=n

Ds(pm(x), pn(x)), (8)

where Ds(pm(x), pn(x)) denotes the Chernoff distance [8] be-
tween two distributions pm(x) and pn(x). This distance is
defined in the following way:

Ds(pm(x), pn(x)) =

max
0≤s≤1

− log
∫

X
pn(x)

{
pm(x)
pn(x)

}s

dx. (9)

Thus one can conclude, that the performance of biometric
person identification modeled as the M-ary hypothesis test-
ing can be approximated by a set of binary tests and upper
limited by the worst pairwise Chernoff distance between al-
ternative hypotheses.



3. PERFORMANCE ANALYSIS

Direct identification. Performance analysis of the problem
of biometric person identification formulated in the previous
Section will be analysed assuming its Gaussian formulation
and availability of the observation of the acquired genuine
biometric template at verification. In fact we suppose that
pi(x) = N (x(i),σ2

ZIN). Such a formulation is justified by
the assumption that equal portion of random distortions is
added to an ideal biometric pattern during enrollment. Thus,
one can rewrite (2) in the following form:

Hi : y = x(i)+z, (10)

where i ∈ {1,2, ...,M} and z ∼ N (0,σ2
Z IN).

For such a formulation of the problem under considera-
tion and following the strategy of multiple hypothesis testing
performance limitation by a binary test that considers the pair
of hypotheses, m and n with the smallest Chernoff distance,
the corresponding MML test (6) can be reconsidered as fol-
lows:

ηML = arg max
i∈{m,n}

pi(x). (11)

Then, taking the logarithms of the likelihood functions,
one obtains the rule that declares the hypothesis m being in
force:

log(pm(x))− log(pn(x)) ≥ 0. (12)

Therefore, one can rewrite (12) using sufficient statistics:

t(y) = yT (x(m)−x(n))− 1
2
(ε(m)− ε(n)), (13)

where ε(m) = x(m)Tx(m), ε(n) = x(n)Tx(n) are the ener-
gies of vectors x(m) and x(n), respectively.

Then, the corresponding prior models on binary hypothe-
ses can be expressed in terms of sufficient statistics as fol-
lows: {

Hn : T (Y) ∼ N (− 1
2d2,σ2

Zd2),
Hm : T (Y) ∼ N ( 1

2d2,σ2
Zd2),

(14)

where d = ‖x(m)−x(n)‖2 is a square distance between orig-
inal biometric patterns x(m) and x(n). Therefore, under the
memoryless assumption and according to (9) the exponent
of the average probability of error that one can expect to at-
tain in biometric person identification modeled as multiple
hypothesis testing is bounded by the corresponding Chernoff
distance Ds(pm(x), pn(x)) that for the case of Gaussian statis-
tics of hypothesis priors can be written as:

Ds(pm(x), pn(x)) =
d2

8σ2
Z

. (15)

Furthermore,
d2 = ‖x(m)−x(n)‖2

= ‖x(m)‖2 +‖x(n)‖2 −2x(m)Tx(n) = 2‖x‖2 (16)

assuming that all biometric patterns have equal energy, i.e.,
‖x(m)‖2 = ‖x(n)‖2 = ‖x‖2, and all of them are pairwise
orthogonal, i.e., x(m)Tx(n) = 0. Finally, one can reduce (15)
as follows:

Ds(pm(x), pn(x)) =
‖x‖2

4σ2
Z

. (17)

Random projection-based identification. In this subsec-
tion of the paper we assume that genuine identification tem-
plates are not available for identification and identity verifi-
cation is performed based on the data securely transformed
to a certain secret domain via applying a secure random pro-
jection operator Φ:

y′ = Φy. (18)

Operator Φ besides security concerns serves to convert an
original length-N vector to a vector of lower dimensionality
L,L ≤ N. An L×N operator Φ is a random matrix whose
elements are generated from a certain density. In the scope
of this paper we assume that the elements of Φ are generated
from a zero mean Gaussian distribution with a variance 1

N ,
i.e., N (0, 1

N ).
It is possible to demonstrate that the corresponding prior

probabilities of the worst case binary hypothesis test can be
defined as follows:

{
H ′

i : T ′(Y) ∼ N (− 1
2d′2,σ2

Zd′2),
H ′

j : T ′(Y) ∼ N ( 1
2d′2,σ2

Zd′2), (19)

where d′2 = (x(m) − x(n))TΦT (ΦΦT )−1Φ(x(m) − x(n))
and ΦT is the result of transposition of projection operator
Φ.

Then the exponent of the average probability of error we
are seeking for is defined:

D′
s(p

m(x), pn(x)) =
d′2

8σ2
Z

. (20)

In the case one assumes that this operator is an ortho-
projector, i.e., ΦΦT = IN , the distance d′ can be modi-
fied as follows: d′2 = (x(m)−x(n))TΦTΦ(x(m)−x(n)) =
‖Φ(x(m)−x(n))‖2.

Attractiveness of projecting onto a randomized basis was
first formulated by Johnson and Linderstrauss [12]. It was
proved that in the case the projection is performed from a
certain vector space onto a random subspace of sufficiently
high dimension, the distance between the space elements will
be approximately preserved. The following sandwich of in-
equalities is valid:

(1−δ )

√
L
N
‖x−y‖ ≤ ‖Φ(x−y)‖

≤ (1+δ )

√
L
N
‖(x−y)‖ (21)

for a sufficiently small positive δ . Then, one can approxi-
mate (20) for the case of ΦΦT = IN as presented below:

D′
s(p

m(x), pn(x)) ≈ L
N
‖x(m)−x(n)‖2

8σ2
Z

. (22)

Finally, assuming that x(m),x(n) are orthogonal se-
quences of equal energy, i.e., condition (16) is valid, one ob-
tains:

D′
s(p

m(x), pn(x)) ≈ L
N
‖x‖2

4σ2
Z

. (23)



5 5.5 6 6.5 7 7.5

10
−0.1

10
0

10
0.1

SNR, [dB]

D
s

Direct
Random projection
Approximation

Figure 3: Behavior of exponent of average probability of er-
ror for direct identification, random projection-based identi-
fication and approximation of random projection-based iden-
tification, L

N = 0.9 (a magnified fragment).

4. EXPERIMENTAL VALIDATION

The main goal of this Section is threefold. We will try to
investigate the behavior of exponent of the average probabil-
ity of error as a function of operational signal-to-noise ratio

(SNR) defined as SNR = 10log10

( ‖x‖2

σ2
Z

)
for the direct iden-

tification case (17). Secondly, we would like to estimate the
price on privacy/security enhancement in terms of loss in per-
formance due to identification based on random projection
(20). Finally, we would like to see the accuracy of perfor-
mance approximation (20) using Johnson-Linderstrauss re-
sult (23). For this purpose we run a set of simulations ac-
cording to the following setup: the length of all vectors N
was selected to be equal 1024, the operational SNR range
was fixed to the interval [−20;20] dB. The templates x were
generated from a zero-mean, unit variance Gaussian distribu-
tion, while the elements of random projector operator Φ are
i.i.d. zero-mean Gaussian with the variance 1

N . The dimen-
sionality reduction ratio L

N was set to [0.9;0.8;0.7;0.6;0.5].
Since the obtained results revealed similar behavior of error
exponent of the average probability of error for all selected
L
N , only the cases of L

N = [0.9;0.7;0.5] are presented in the
paper (Figure 3-5). The obtained simulation result allows to
conclude that in multiple hypothesis testing biometric per-
son identification problem formulation under the stationary
acquisition conditions a certain loss in performance of ran-
dom projection based identification applied to protect pri-
vacy/enhance security of the protocol versus a direct one is
observed in terms of exponent of the average probability of
error due to the impact of the projection operator. However,
one can conclude that a proper selection of the secret sub-
space dimensionality makes this loss acceptable contrarily to
the statement made in [6]. These results also confirm a high
accuracy of Johnson-Linderstrauss approximation of perfor-
mance of the random projection-based identification.
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Figure 4: Behavior of exponent of average probability of er-
ror for direct identification, random projection-based identi-
fication and approximation of random projection-based iden-
tification, L

N = 0.7 (a magnified fragment).
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Figure 5: Behavior of exponent of average probability of er-
ror for direct identification, random projection-based identi-
fication and approximation of random projection-based iden-
tification L

N = 0.5: (a magnified fragment).



5. CONCLUSIONS AND FUTURE RESEARCH
PERSPECTIVES

In this paper we considered the problem of privacy preserv-
ing biometric person identification from performance per-
spective. We propose to protect biometric templates used
for person identity verification projecting them onto a secret
randomize subset. This allows to achieve privacy protection
due to elimination of the necessity to store original biomet-
ric templates in a database as well as making it impossible
to recover the genuine biometric template from its projected
version.

We conducted performance analysis of random
projection-based identification versus a direct one in
terms of error exponent of the average probability of error.
In the former case we were able to provide performance
limits approximation using properties of random projections.
By means of computer simulations we were capable of
demonstrating a certain performance loss versus direct
identity verification that is linearly proportional to the
dimensionality reduction ratio. Finally, a high accuracy of
Johnson-Linderstrauss approximation of performance of
projection-based identification was demonstrated.

In our future research we will extend the performed anal-
ysis to the case of multibiometric person identification that is
known to achieve even more accurate identification results.
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