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ABSTRACT

When the correlation matrix is known, the resolution power
of subspace algorithms is infinite. In the presence of mod-
elling errors, even if the correlation matrix is known, sources
can no longer be resolved with certainty. Focusing on the
MUSIC algorithm [1], the purpose of this work is to provide
closed form expression of bias and variance versus the model
mismatch (these errors can be different for each source). Un-
like previous work, these performance measures are derived
conditioned on the success of a certain source resolution test.
Among the resolution definitions proposed in [2], we investi-
gate which one is more suitable for our purposes. Numerical
results support the theoretical investigations. Our findings
are of a great interest for the determination of the necessary
antenna calibration accuracy to achieve specifications on the
estimator performance.

1. INTRODUCTION

Estimating the direction of arrival (DOA) of a signal inci-
dent on a planar array of sensors has applications in many
fields including radar, sonar, telecommunications. A lot of
works have already been done to characterize the perfor-
mance in the asymptotic region (in SNR and in the number
of snapshots) ([3][4][5][6]). A major reason for the interest
in so called high resolution methods (e.g. [1]) is on their
asymptotic infinite resolution power if the assumed model of
reception is correct. Unfortunately, in any operational con-
text the assumed reception model is different from the true
one, even after a calibration procedure. Some efforts have re-
cently been done in this sense to characterize the algorithms
in presence of model mismatch.

In the presence of modeling errors, some authors have
studied the performance degradation, in terms of variance
(e.g. [7, 8, 9, 10],...). For small model mismatch, these results
are correct in the sense that the resolution probability is
close to one. This is no more the case when the mismatch
increases, because even if the correlation matrix is known,
the resolution power is no more infinite [2].

Some other authors have investigated the perfor-
mance degradation versus the model mismatch, under the
point of view of Resolution threshold for equipowered
sources. A heuristic definition of the resolution threshold
([11][12][13][14],...) has been used. The performances in the
region threshold have also been analysed [15].To the best of
our knowledge, there is no general result regarding perfor-
mances (bias, variance and probability of resolution) under
a given resolution condition. In the particular case of reso-
lution probability study, only Zhang in [16] and Richmond
[17] have analyzed this performance criterion but without
deriving closed form expressions for bias and variance under
a resolution condition.

In this paper we propose to fill these gaps with a more
detailed investigation of the phenomenon. For this we apply

two out of the three resolution definitions proposed in [2],
and derive the associated closed form expressions of bias and
variance for the MUSIC algorithm conditioned on resolution
success.

The organization of the paper is as follows. In Section
2 we formulate the problem an introduce the notation. In
Section 3, we provide some background for the mathematical
derivation. In Section 4, the bias and variance conditioned
on the sources resolution are established for two of the defi-
nitions in [2]. In Section 5, a numerical simulation is used to
illustrate the theoretical results and to investigate the use-
fulness of the different resolution definitions. A conclusion
is given in Section 6.

2. SIGNAL MODELLING AND PROBLEM
FORMULATION

Assume a noisy mixture of M narrow-band sources of DOAs
θm, 1 ≤ m ≤ M , is received by an array of N sensors. The
associated observation vector, x(t), whose components xn(t)
(1 ≤ n ≤ N) are the complex envelopes of the signals at the
output of the sensors, is then given by

x(t) =

M∑
m=1

ã (θm) sm(t) + n(t) = Ã s(t) + n(t) (1)

Here, ã (θ) is the true steering vector of a signal source in the

direction θ, and Ã=[ã1 · · · ãM ] is the steering matrix, with
ãm = ã (θm). Further, n(t) is an additive noise vector, which
is supposed to be spatially white, and sm(t) is the complex
envelope of the mth source. Denoting a (θ) the assumed
(incorrect) steering vector, the MUSIC [1] DOA estimates
are given by the M smallest local minima of the criterion
function

c(θ) = a (θ)H Π̂ (T ) a (θ) (2)

where Π̂ (T ) is the orthogonal projection matrix onto the
noise subspace, extracted from the N −M minor eigenvec-
tors of the estimated correlation matrix R̂x (T ). The true
correlation matrix is denoted Rx = E

[
x(t)x(t)H

]
, and

R̂x (T ) =
1

T

T∑
t=0

x(t)x(t)H ,

where (·)H denotes complex conjugate transpose. In this
paper, the MUSIC algorithm is analyzed in the presence of
steering vector modelling errors only. Thus, the asymptotic
case (T →∞) is considered. Assuming non-coherent signals,
the noise projector is given by

lim
T→∞

Π̂ (T ) = Π = IN − ÃÃ
#
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where Ã=[ã1 · · · ãM ] and Ã# = (ÃHÃ)−1ÃH is the Moore-
Penrose pseudo-inverse. We assume additive modelling er-
rors εm to the steering vectors, defined by

εm = ã (θm)− a (θm) = ãm − am . (3)

The asymptotic projector Π depends on the modelling error
vector, which we define as the (2NM + 1)× 1 vector

ε =
[

1 vec (ε1 · · · εM )T vec (ε1 · · · εM )H
]T

, (4)

We write Π (ε) to stress this dependence. Consequently, the
associated MUSIC criterion depends on θ and ε according to
c(θ, ε) = a (θ)H Π(ε) a (θ). When ãm 6= am, the m−th local

minimum of c(θ, ε) occurs at θ̂m, which is different from the

true θm. The DOA estimation error ∆θm=θ̂m − θm then
depends only on the modelling error ε. In this paper, the
random vectors εm are assumed to be circular and Gaussian
distributed.

Two sources are said ”resolved” when the MUSIC crite-
rion exhibits two minima at θ̂1 and θ̂2, ”close to” the true θ1

and θ2 respectively. Rigorously speaking, a sound definition
of a resolution condition should be built from the statistical
properties of the shape of c(θ, ε). This realistic definition
appears impractical for a performance analysis.

In order to obtain tractable derivations of conditional
resolution performance, we focus on a small number of MU-
SIC criterion features ηi (1 ≤ i ≤ I) for a discrete set of
directions of arrival to obtain a wide class of resolution def-
initions. Thus we propose a general framework for condi-
tional resolution performance derivation. This approach has
been adopted in [2] for the derivation of the resolution prob-
ability. More precisely, the resolution conditions rely on the
comparison between features ηi, taken at the ith DOA θi

(1 ≤ i ≤ I) of the c(θ, ε) shape, and some threshold values,
αi, leading to different resolution definitions. In this paper
we focus on two resolution conditions from [2] and conclude
that the practical validity of each definition is different and
scenario-dependent.

For a given resolution definition, the sources are said to
be resolved when the I conditions on ηi verify ηi < αi. Con-
sequently, the associated mathematical bias and RMS (Root
Mean Square) error needs the evaluation of E[∆θm | ηi <

αi, 1 ≤ i ≤ I] and RMSm =
√
E[∆θ2

m | ηi < αi, 1 ≤ i ≤ I],
where E[. | .] is the conditional expectation. The probability
of resolution Pr = Pr(ηi < αi , 1 ≤ i ≤ I) is derived in
[2]. The main purpose of this work is to provide conditional
performance results for two resolution definitions.

3. PRELIMINARY MATHEMATICAL RESULTS

In this section we introduce recent approximations ([9]) of
the DOA error ∆θm and the MUSIC criterion c(θ, ε), which
remain valid in presence of closely spaced sources. We also
provide some definitions and results for incomplete statisti-
cal moments that are necessary for computing the desired
conditional performance measures.

3.1 Approximation of DOA error and MUSIC cri-
terion

According to [9], the MUSIC criterion and its derivatives can
be approximated to the second order by

c(θ, ε) ≈ εHQ (a (θ) ,a (θ)) ε (5)

ċ(θ, ε) ≈ εH Q̇(θ)ε

c̈(θ, ε) ≈ εH Q̈(θ)ε

where

Q̇(θ)
def
= Q (a(θ), ȧ(θ)) + Q (ȧ(θ),a(θ)) ,

Q̈(θ)
def
= Q (a(θ), ä(θ)) + Q (ä(θ),a(θ)) + 2 Q (ȧ(θ), ȧ(θ))

Here, ȧ(θ) and ä(θ) are, respectively, the first and second
derivatives of a(θ) with respect to θ, and the matrix Q (u,v),
as a function of two vectors u and v, is defined by

Q (u,v) =


 q −qH

12 0T

−q21 Q22 Q23

0 Q32 Q33


 , (6)

In the above expression, Π0=Π(ε = 0), q=vH Π0 u,

q12=Φ(u,v) and q21=Φ(v,u) with Φ (u,v)=
(
A#u

)∗ ⊗
(Π0v). The remaining blocks are given by

Q22 = Ψ
(
A#,A#,Π0

)
,

Q23 = Ψ

(
A#,Π0,

(
A#

)H
)

P,

Q32 = PH Ψ
(
Π0,A

#,A#
)

,

Q33 = −PH Ψ

(
Π0,Π0,A

#
(
A#

)H
)

P,

where

Ψ (X,Y,Z) =
(
(Xv)∗ (Yu)T

)
⊗ Z

Here, ⊗ is the Kronecker product and P the per-
mutation matrix defined by vec

(
ET

)
=Pvec (E) where

E=[ ε1 · · · εM ]. According to [7, 9] a first-order ap-

proximation of the DOA estimation error ∆θm=θ̂m − θm is

∆θm = − ċ(θm, ε)

c̈(θm, ε)
(7)

where ċ(θ, ε) and c̈(θ, ε), respectively, indicate the first and
second derivatives of the criterion c(θ, ε) at θ as given in (5).

3.2 Incomplete Moments

In this section, x, y and z are assumed to be scalar random
variables. The correlation and the covariance are defined by

Rxy = E [xy] , Cxy = E [xy]− E [x]E [y] (8)

The nth Cumulative Moments Function (CMF) is

γ(xn, p(x), α) =

∫ α

−∞
xnp(x)dx (9)

where p(x) is the probability density function of x. In the
particular case of a Gaussian variable, let us denote the
function γ(xn, p(x), α) as γG(xn,

[
µ σ2

]
, α), where µ and σ

are, respectively, the mean and the standard deviation. The
CMF function is written as γN (un, α) = γG(un, [0 1] , α) in
the standardized Gaussian case. According to [2], the in-
complete moment E [xn | x < α], for any n, is given by

E [xn | x < α] =
γ(xn, p(x), α)

γ(x0, p(x), α)
(10)

When x is a Gaussian random variable of standard devi-
ation σ and mean µ, we have

E [xn | x < α] =
γG(xn,

[
µ σ2

]
, α)

γG(x0, [µ σ2] , α)
(11)
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The closed form expressions of the CMF function in the gen-
eral and standardized Gaussian cases can be expressed as

γG(xn,
[
µ σ2

]
, α) =

n∑

k=0

Cn−k
n σn−kµk γN (un−k, αN )

(12)

γN (un, α) = − (αN )n−1
√

2π
exp

(
− (αN )2

2

)

+(n− 1) γN (un−2, αN )
(13)

where x = µ + σu, α = µ + σαN , γN (u, αN ) =

− (
1/
√

2π
)
exp

(− (αN )2 /2
)

and Cn−k
n = n!/ ((n− k)! k!) .

These last expressions are proved in [2]. In particular, the
first and second incomplete moments of the Gaussian vari-
able x are

E [x | x < α] = −√CxxΨx (α) + E [x] (14)

E
[
x2 | x < α

]− E [
x2] = −√Cxx (α + E [x])Ψx (α)

= (α + E [x]) (E [x | x < α]− E [x]) (15)

where E
[
(x− E [x])2

]
= Cxx and

Ψx (α) = Ψ

(
α− E [x]√

Cxx

)
(16)

Ψ (y) =

(
1/
√

2π
)
exp

(−y2/2
)

γN (u0, y)

Thus, according to (14)

E
[
x2 | x < α

]− E [x | x < α]2 = −√CxxΨxx (α) + Cxx

(17)

Ψxx (α) = Ψx (α)
(
α +

√
CxxΨx (α)− E [x]

)
(18)

3.3 Incomplete Conditional Moments

Introduce the notation x̄ = x − E[x] and ᾱ = α − E[x].
According to [2] and (14) the first order conditional moment
is in the Gaussian case given by

E [y | x < α] =
Cxy

Cxx
E [x̄ | x̄ < ᾱ] + E [y] (19)

= − Cxy√
Cxx

Ψx (α) + E [y]

As proved in [18], the expression for the second order
conditional moment is

Cyz (x < α) = E [yz | x < α]− E [y | x < α]E [z | x < α]

=
CxyCxz

(Cxx)2
Cxx (x < α) +

CyzCxx − CxzCxy

Cxx

= − CxyCxz

(Cxx)3/2
Ψxx (α) + Cyz (20)

where Cxx (x < α) = E
[
x2 | x < α

]−E [x | x < α]2 is given
by (17).

4. CONDITIONAL PERFORMANCES

This paper requires a resolution definition to evaluate the
performance given that the sources are resolved. We use
definitions based on the MUSIC pseudo-spectrum c(θ, ε),
taken at the true position θ1 and θ2 and at the mean value
θ̄ = (θ1 + θ2) /2 proposed in [2]. From these definitions this

paper establishes the corresponding expressions for the bias
and RMS error conditioned on resolution.

The derivations of this paper are based on the fact that
the real random variables εHQ(θ)ε, εHQ̇(θ)ε and εH Q̈(θ)ε
are asymptotically Gaussian distributed when the modelling
error vector ε is Gaussian and circular. This assumption
has been justified in [2] by the Lyapunov Central Limit
Theorem. To summarize, we can expect a good Gaussian
approximation of εHQ ε even for M = 2, provided N is
not ”too small”. In this paper the DOA estimation error
∆θm = −ċ(θm, ε)/c̈(θm, ε) is approximated by the following
first order Taylor expansion with respect to (ui, vi)

∆θm = − ċ(θm, ε)

E [c̈(θm, ε)]
+ o (‖ui‖ , ‖vi‖) (21)

where ui = −ċ(θm, ε)/E [c̈(θm, ε)], vi=c̈(θm, ε)/E [c̈(θm, ε)]−
1. According to (5), ċ(θm, ε) and c̈(θm, ε) can be approxi-

mated by ċ(θm, ε) ≈ εH Q̇mε and c̈(θm, ε) ≈ εHQ̈mε respec-
tively. Noting that E

[(
εHQε

)]
= trace (QRε), the DOA

estimation error ∆θm becomes

∆θm ≈ − εHQ̇mε

trace
(
Q̈mRε

) (22)

where Q̇m = Q̇ (θm) and Q̈m = Q̈ (θm) and Rε = E[εεH ].

As the hermitian form εHQ̇mε is Gaussian due to the Lya-
punov Central Limit Theorem according to [2], the approxi-
mation (22) of ∆θm is also Gaussian.

4.1 First resolution definition

In this approach firstly introduced in [19], the resolution of
two sources of DOAs θ1 and θ2 is defined by

c̈
(
θ̄, ε

)
< 0. (23)

This condition means that the MUSIC null spectrum
presents a negative concavity between θ1 and θ2, ensuring
the presence of two minima. Using (5), the approximate
expression for c̈

(
θ̄, ε

)
is

c̈
(
θ̄, ε

)
= εH

••
Q̄ ε

••
Q̄ = Q

(
a

(
θ̄
)
, ä

(
θ̄
))

+ Q
(
ä

(
θ̄
)
,a

(
θ̄
))

+ 2Q
(
ȧ

(
θ̄
)
, ȧ

(
θ̄
))

where ȧ
(
θ̄
)
, ä

(
θ̄
)

are, respectively, the first and second

derivatives of a (θ) evaluated at θ̄. The resolution condition
given by (23) is therefore expressed as

η1 < 0 with η1 = εH
••
Q̄ε

where η1 is a real random variable. The resolution probabil-
ity Pr = Pr(η1 < 0) has been established in [2] as

Pr = Pr(η1 < 0) = γN

(
u0,− E [η1]√

Cη1η1

)

=

−E[η1]/
√

Cη1η1∫

−∞

exp
(−u2/2

)
√

2π
du

The conditional bias E[∆θm | η1 < 0] is

E[∆θm | η1 < 0] = −Cη1∆θm√
Cη1η1

Ψη1 (0) + E [∆θm] (24)
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using (16) and(19), the associated RMS error E[∆θ2
m | η1 <

0] is given by

E
[
(∆θm)2 | η1 < 0

]
= − (Cη1∆θm)2

(Cη1η1)
3/2 Ψη1η1 (0) + C∆θm∆θm

+E[∆θm | η1 < 0]2

(25)
according to (18) and (20) where

Ψη1η1 (0) = Ψη1 (0)
(√

Cη1η1Ψη1 (0)− E [η1]
)

Ψη1 (0) =

(
1/
√

2π
)
exp

(
− E[η1]2

Cη1η1

)

Pr(η1 < 0)

The above incomplete moments require the following results

C∆θm∆θm =
F2(Q̇m,Q̇m)−(trace(Q̇mRε))

2

trace(Q̈mRε)
2 (26)

Cη1∆θm =
trace(Q̇mRε)trace

(••
Q̄Rε

)
−F2

(
Q̇m,

••
Q̄

)

trace(Q̈mRε)

Cη1η1 = F2

(••
Q̄,

••
Q̄

)
− trace

(••
Q̄Rε

)2

E [∆θm] = − trace(Q̇mRε)
trace(Q̈mRε)

E [η1] = trace

(••
Q̄Rε

)

where ∆θm is approximated by −εHQ̇mε/trace
(
Q̈mRε

)

according to (22) and the expression of F2 (A,B) =
E

[(
εHAε

) (
εHBε

)]
is

F2 (A,B) = trace (A Rε) trace (B Rε) (27)

+trace (A RεB Rε)− 2 [A]11[B]11

+trace(AT C∗
εB Cε)

Above, [A]11 is the upper left element of the matrix A, Rε =
E[εεH ] and Cε = E[εεT ]. The proof is given in [2].

4.2 Second resolution definition

In this second approach, similar to Zhang [16] in the case
of finite number of snapshots without modelling error, two
sources of DOAs θ1 and θ2 are considered resolved if

c(θ1, ε) + c(θ2, ε)

2
< c

(
θ̄, ε

)
. (28)

Using (5), c(θ, ε) is approximated by c(θ, ε) ≈ εH

Q (a (θ) ,a (θ)) ε. Denoting Qm
def
= Q (a (θm) ,a (θm)),

Q̄
def
= Q

(
a

(
θ̄
)
,a

(
θ̄
))

, the resolution condition given by (28)
can be rewritten as

η1 < 0 with η1 = εHQ̃ε

Q̃ =
Q1 + Q2

2
− Q̄ .

Again, assuming η1 is Gaussian distributed, the conditional
bias and RMS error according to the second resolution def-
inition is obtained directly from (24)-(26) where the matrix
••
Q̄ must be replaced by Q̃.

5. SIMULATIONS

In this simulation we use a N=5 sensors uniform circu-
lar array of radius R=λ (wavelength), in which the 3 dB
beamwidth is ∆θ = ±14◦. Two sources, separated less than
one beamwidth are impinging on the antenna; the first from
the direction θ1 = 0◦ and the second from θ2 = −5.84◦.
All simulations are conducted with 4000 independent trials.
The random modeling errors of these simulations are cir-
cularly symmetric Gaussian distributed with E[εiε

H
j ]=δi−j

σ2IN and E[εi]=0. In the simulations, two sources of di-
rection θ1 and θ2 are said to be resolved when the criterion
function has two minima θ̂1 and θ̂2, verifying c(θ̂m, ε) < ηN
(Assuming that ‖a (θ)‖ is normalized to N). The coefficient
η is fixed to 0.1, following practical considerations concern-
ing the ambiguity property of the uniform circular array of
radius R=λ with N=5 sensors used for simulation. This
process avoids angular estimation associated to array out-
liers (due to quasi-ambiguities).

In Figure 1, the theoretical probabilities of resolution
with the definitions (23) and (28) are compared to the em-

pirical blind one. The empirical is closer to the 2nd definition
and is between both theoretical predictions.

C12=0.9 Simulation réel 
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2nd approach

Figure 1: Probability of resolution for the first source versus
the level σ of Gaussian modelling errors. θ2 − θ1 = −5.84◦.

In Figures 2-3, the bias and RMS error conditioned on
empirical resolution are compared to the corresponding the-
oretical result using the two resolution definitions, and to the
second order unconditional performance results (”classical”)
recently introduced in [9]. The first order unconditional per-
formance, traditionally used, ([7, 10]) gives RMS error linear
with respect to σ and null bias. In the particular scenario of
these simulations, the first and second order unconditional
performances gives the same RMS error but two different
solution for bias. If σ < 0.02, where the probability of res-
olution is higher than 0.9, the theoretical performances are
very close to the empirical one. When 0.02 < σ < 0.04,
the RMS error of the 1st definition is the closest and for the
bias it is the 2nd . As the classical performance, which are
unconditional, take into account the unresolved case, they
give an incorrect result in terms of bias. In contrast, the
proposed conditional performance results give a good pre-
diction of bias and RMS error.

6. CONCLUSION

This paper applies two resolution definitions from [2], where
the associated probability of resolution is derived. For each
definition, we derive the bias and variance of the MUSIC
DOA estimates given that the sources are resolved. To the
best of our knowledge, a theoretical expression of the condi-
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Figure 2: Empirical conditional Bias for the first source
versus the level σ of Gaussian modelling errors. θ2 − θ1 =
−5.84◦.
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Figure 3: Empirical conditional RMS error for the first
source versus the level σ of Gaussian modelling errors.
θ2 − θ1 = −5.84◦.

tional (resolution) bias and variance is available for the first
time. Simulations show that the resolution condition that
best matches empirical results is somewhat between the def-
initions (c(θ1, ε) + c(θ2, ε)) < 2 c

(
θ̄, ε

)
and c̈

(
θ̄, ε

)
< 0 .

Using these criteria and our proposed theoretical resolution
results leads to a practical tool for setting the calibration re-
quirements for an experimental bearing estimation system.
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