
LIMIT DISTRIBUTIONS FOR WAVELET PACKET COEFFICIENTS OF

BAND-LIMITED STATIONARY RANDOM PROCESSES

Abdourrahmane M. Atto1, Dominique Pastor2

Institut TELECOM, TELECOM Bretagne
LAB-STICC, CNRS UMR 3192

Technopôle Brest-Iroise, CS 83818
29238 Brest Cedex 3, FRANCE

ABSTRACT

This paper addresses the limit distribution of wavelet packet
coefficients obtained by decomposing band-limited random
processes. When the wavelet decomposition filters satisfy
a certain property of regularity, strictly stationary band-
limited random processes yield wavelet packet coefficients
that are asymptotically uncorrelated and Gaussian dis-
tributed when the resolution level increases. For any given
path, the variance of the limit distribution is the value of
the power spectral density of the input process at a specific
frequency. Experimental results are presented to assess the
convergence rate when Daubechies filters are used.

1. INTRODUCTION

The Discrete Wavelet Packet Transform (DWPT) allows
many possible representations of functions by providing var-
ious Hilbertian bases. It is not computationally expensive
and has some remarkable properties such as the sparse repre-
sentation it provides for smooth signals [1, 2] or the ‘whiten-
ing effect’ it asymptotically yields for a large class of ran-
dom processes [3, 4]. For applications in signal processing,
time-series analysis and communication systems, the DWPT
is a powerful tool and, as such, has received much interest
in recent years. The DWPT is computed via projections on
wavelet packet spaces, which are Hilbertian functional spaces
hereafter denoted Wj,n (see section 2 for details). In this no-
tation, j ∈ N is the resolution level and the shift parameter
n is valued in {0, 1, . . . , 2j − 1}.

Let X be a second-order centred strictly stationary ran-
dom process, continuous in quadratic mean. Assume that X
has finite cumulants and has a polyspectrum γN (ω1, · · · , ωN )
for every natural number N and every (ω1, · · · , ωN ) ∈ R

N .
When N = 1, γ1 is the spectrum of X and is simply de-
noted γ. Let cj,n = (cj,n[k])k∈Z stand for the sequence of
the wavelet packet coefficients of X with respect to Wj,n.
According to [3, Proposition 12], if the shift parameter n
is a constant and j tends to infinity, the sequence (cj,n)j∈N

converges, in a ‘distributional’ sense specified below, to a
discrete white Gaussian process with variance γ(0).

However, most of the paths of an DWPT tree involve
nodes (j, n) whose shift parameters n = n(j) vary with j.
In [4], by taking this dependency into account, and by us-
ing specific DWPT filters, the asymptotic decorrelation of
the wavelet packet coefficients is established for band-limited
wide-sense stationary random processes. The limit variance
of the wavelet packet coefficients is the value of the spectrum
of the input random process at a frequency associated to the
path followed in the decomposition tree. In the present pa-
per, the focus is the limit distribution of the wavelet packet
coefficients of a strictly random process, for any path of the
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DWPT. The limit distribution still depends on the DWPT
filters and the path considered in the decomposition tree. In
this respect, the results presented below complement those
given in [3, 4].

The paper is organized as follows. Section 2 recalls some
basics about the DWPT. After presenting preliminary re-
sults concerning the DWPT of strictly stationary random
processes (see section 3), the main result of this paper is
proposition 1. It is stated in section 4.3 on the basis of the
material given in sections 4.1 and 4.2. Experimental results
are presented in section 5 to illustrate and confirm proposi-
tion 1. The conclusion of this paper announces a theoretical
extension of this work.

2. THE DWPT

A DWPT is performed by using decomposition filters with
impulse responses hε, ε = 0, 1, that satisfy the following
properties. First, each filter hε is an element of ℓ2(Z) and
its Fourier transform is hereafter defined by

Hε(ω) =
1√
2

∑

ℓ∈Z

hε[ℓ] exp (−iℓω) . (1)

Second, the matrix

(

H0(ω) H1(ω)
H0(ω + π

2
) H1(ω + π

2
)

)

is unitary

for every real number ω. The unitary nature of this matrix
implies that |Hε(ω)| 6 1 for every ε = 0, 1 and every ω ∈ R.

Let Φ be a function such that {τkΦ : k ∈ Z} is an or-
thonormal system of L2(R), where τkΦ : t 7−→ Φ(t−k). Let
U be the closure of the space spanned by this orthonormal
system. Let us define the following sequence of elements of
L2(R) by recursively setting, for n ∈ N and ε ∈ {0, 1},

{

Wε(t) =
√

2
∑

ℓ∈Z
hε[ℓ]Φ(2t − ℓ)

W2n+ε(t) =
√

2
∑

ℓ∈Z
hε[ℓ]Wn(2t − ℓ).

(2)

The function Φ in Eq. (2) is not necessarily the scaling
function associated with h0. If Φ is this scaling function, we
have W0 = Φ and Eq. (2) holds true even if n = 0. For any
pair (j, n) of natural numbers and k ∈ Z, we define

Wj,n,k(t) = Wj,n(t − 2jk) = 2−j/2Wn(2−jt − k). (3)

Then, {Wj,n,k : k ∈ Z} is an orthonormal system of L2(R).
The closure of the functional space spanned by this system
is called the wavelet packet space Wj,n. Any Wj,n,k is called
a wavelet packet function. The DWPT decomposition of
the function space U then consists in the following recur-
sive splitting of U into orthogonal subspaces:

{

U = W1,0 ⊕ W1,1,
Wj,n = Wj+1,2n ⊕ Wj+1,2n+1,
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for every natural number j and every n = 0, 1, 2, . . . , 2j − 1.
According to the foregoing, U can be split into orthogonal
sums of wavelet packet spaces. Thus, for any given Hilber-
tian random process X(t), the coefficients of the projection
of X on Wj,n define a random sequence (cj,n[k])k∈Z where

cj,n[k] =

∫

R

X(t)Wj,n,k(t)dt. (4)

3. PRELIMINARY RESULTS ABOUT THE
DWPT OF A STRICTLY STATIONARY

RANDOM PROCESS

Henceforth, X(t) stands for some centred, strictly station-
ary random process. It is also assumed that X has finite
cumulants and has a polyspectrum γN (ω1, ω2, · · · , ωN ) for
every natural number N and every (ω1, ω2, · · · , ωN ) ∈ R

N .
The polyspectrum is the Fourier transform of the (N + 1)-
th cumulant of X. When N = 1, γ1 is the spectrum
of X. This spectrum is hereafter denoted γ. From now
on, it is assumed that γN belongs to L∞(RN ) and that
there exist two positive real numbers ν and C such that
|FΦ(ω)| 6 C/(1 + |ω|1+ν), ω ∈ R, where Ff denotes the
Fourier transform of f ∈ L1(R) ∪ L2(R) and is given by
Ff(ω) =

∫

f(t) exp(−iωt)dt if f ∈ L1(R). The (N + 1)-th
cumulant of the random process cj,n has the following inte-
gral form (see [5, Proposition 1]):

cumj,n[k1, k2, · · · , kN ]

= 2−j(N−1)/2

(2π)N

∫

RN

dω1dω2 · · · dωN

exp (−i(k1ω1 + k2ω2 + · · · + kNωN ))
γN (−ω12

−j ,−ω22
−j , · · · ,−ωN2−j)

FWn(−ω1 − ω2 − · · · − ωN )
FWn(ω1)FWn(ω2) · · · FWn(ωN ).

(5)

If the shift parameter n is constant, it follows from
Lebesgue’s dominated convergence theorem that, for any
natural number N > 1, cumj,n[k1, k2, · · · , kN ] tends to 0
uniformly in k1, k2, . . . , kN when j tends to ∞. This is a
consequence of [3, Proposition 11].

Now, from Eq. (5), it follows that when N = 1, the cu-
mulant cumj,n[k] or order 2 of X, that is the autocorrelation
function Rj,n[k] of the random process cj,n, is

Rj,n[k] =
1

2π

∫

R

γ(
ω

2j
)|FWn(ω)|2 exp (ikω) dω. (6)

If γ ∈ L∞(R) and is continuous at 0, the integrand on the
right hand side (rhs) of Eq. (6) is integrable and the limit
of γ(ω/2j) is γ(0) when j tends to ∞. Therefore, for every
given natural number n, it follows from Lebesgue’s domi-
nated convergence theorem applied to Eq. (6) (see for in-
stance [3, Corollary 5]) that limj→+∞ Rj,n[k] = γ(0)δ[k],
where δ[·] is the standard Kronecker symbol. According to
the foregoing, when the shift parameter n is a constant func-
tion of the resolution level j and j tends to ∞, the sequence
(cj,n)j∈N, associated with the strictly stationary random pro-
cess X considered above, converges to a discrete white Gaus-
sian process with standard deviation γ(0) in the following
‘distributional’ sense: Given any natural number N and any
N -uple k1, k2, . . . , kN of integers, the distribution of the ran-
dom vector (cj,n[k1], cj,n[k2], . . . , cj,n[kN ]) converges, when j
tends to infinity, to the centred N -variate normal distribu-
tion N (0, γ(0)IN ) with covariance matrix γ(0)IN , where IN

is the N × N identity matrix.
When the shift parameter n = n(j) varies with j, which is

the case for most paths of the DWPT tree, Lebesgue’s dom-
inated convergence theorem does not apply to Eqs. (5), (6)
and the analysis of the statistical behaviour of cj,n(j) when

j tends to infinity becomes more intricate. This behaviour
is studied in section 4 after introducing some material in
sections 4.1 and 4.2.

4. MAIN RESULTS

The main result of this paper is Proposition 1, given in sec-
tion 4.3 below. To understand this theoretical result, the fol-
lowing material is needed. This material concerns the repre-
sentation of DWPT paths by means of binary sequences (see
section 4.1) and the Shannon DWPT of band-limited func-
tions (see section 4.2). In addition, it is more convenient to
write the cumulant given by Eq. (5) in the following equiv-
alent form

cumj,n[k1, k2, · · · , kN ]

= 1
(2π)N

∫

RN

dω1dω2 · · · dωN

exp
(

−i2j(k1ω1 + k2ω2 + · · · + kNωN )
)

γN (−ω1,−ω2, · · · ,−ωN )
FWj,n(−ω1 − ω2 − · · · − ωN )
FWj,n(ω1)FWj,n(ω2) · · · FWj,n(ωN ).

(7)
This equality derives from a straightforward change of vari-
able and the relation FWj,n(ω) = 2j/2FWn(2jω), which is a
consequence of the second equality in Eq. (3). In the same
way, the autocorrelation function (6) equals

Rj,n[k] =
1

2π

∫

R

γ(ω)|FWj,n(ω)|2 exp
(

i2jkω
)

dω. (8)

4.1 Binary representations of the paths of the
DWPT decomposition tree

With the same notations as in section 2, a given wavelet
packet path P is described by a sequence of nested func-
tional subspaces: P = (U, {Wj,n(j)}j∈N), where Wj,n(j) ⊂
Wj−1,n(j−1). By construction, each Wj,n(j) is obtained by
recursively decomposing U with a particular sequence of fil-
ters (hεℓ)ℓ=1,2,··· ,j where each εℓ ∈ {0, 1}. Therefore, the
shift parameter is

n(j) =

j
∑

ℓ=1

εℓ2
j−ℓ ∈ {0, 1, . . . , 2j − 1} (9)

at every resolution level j. Note also the easy relation

n(j) = 2n(j − 1) + εj , (10)

for j ∈ N, with the convention n(0) = 0. Thus, path P can
be assigned to the binary sequence λ = (εℓ)ℓ>1 of elements
of {0, 1}. Conversely, any binary sequence λ = (εℓ)ℓ∈N where
each εℓ is an element of {0, 1} specifies a unique path Pλ of
the decomposition tree. At each node of this path, the shift
parameter n depends on j and λ via Eq. (9) so that the
notation n = nλ(j) will hereafter be used to indicate this
dependence.

Let us consider a path Pλ = (U, {Wj,nλ(j)}j∈N) of the
DWPT decomposition tree associated with a binary sequence
λ of elements of {0, 1}. At each resolution level j, the shift
parameter n is the function n = nλ(j) of j. We then have
two cases. First, if nλ is a constant function of j, it derives
from Eq. (10) that λ is the null sequence. In this case, the
shift parameter is 0 at each resolution level and the DWPT of
X consists of an infinite sequence of low-pass filtering. The
limit distribution is then derived from Lebesgue’s dominated
convergence theorem applied to Eqs. (5) and (6). The second
case is that of a function nλ which is not constant with j.
For instance, consider the sequence λ = (1, 1, . . .) for which
nλ(j) = 2j − 1 so that the nodes of Pλ are (j, 2j − 1). As
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mentioned at the end of section 3, when the shift parameter
n = n(j) varies with j, Lebesgue’s dominated convergence
theorem does not apply to Eqs. (5) and (6). The analysis of
the statistical behaviour of cj,n(j) when j tends to infinity is
described in section 4.3.

4.2 Shannon DWPT and the Paley-Wiener space of
π band-limited functions

We start by considering the case where the DWPT is per-
formed via the Shannon DWPT filters. The Shannon filters
are hereafter denoted hS

ε for ε = 0, 1. These filters are ideal
low-pass and high-pass filters. The Fourier transform of hS

ε

is

HS

ε (ω) =
∑

ℓ∈Z

1l[
−

(ε+1)π
2

,− επ
2

]

∪

[

επ
2

,
(ε+1)π

2

](ω − 2πℓ). (11)

The scaling function ΦS associated with these filters is
ΦS(t) = sinc(t) = sin(πt)/πt, t ∈ R, with ΦS(0) = 1. The
Fourier transform of this scaling function is FΦS = 1l[−π,π],
where 1lK denotes the indicator function of a given set K:
1lK(x) = 1 if x ∈ K and 1lK(x) = 0, otherwise. The clo-
sure US of the space spanned by the orthonormal system
{τkΦS : k ∈ Z} is then the Paley-Wiener (PW) space of
those elements of L2(R) that are π band-limited in the sense
that their Fourier transform is supported within [−π, π]. The
PW space US is the natural representation space of π band-
limited and second-order Wide-Sense Stationary (WSS) ran-
dom processes (see [4, Appendix D]). Any element of this
space satisfies Shannon’s sampling theorem. Therefore, the
DWPT of any band-limited and second-order WSS random
process can be initialized with the samples of this proces.
Form now on, the decomposition space is the PW space US.

Let us consider the Shannon DWPT of the PW space
US. The wavelet packet functions W S

j,n of this DWPT can be

computed via Eqs. (2), (3), by setting Φ = ΦS and hε = hS
ε,

ε = 0, 1. The Fourier transforms of these wavelet packet
functions are given by ([6, Proposition 8.2, p. 328])

FW S

j,n = 2j/21l[
−

(G(n)+1)π

2j ,−
G(n)π

2j

]

∪

[

G(n)π

2j ,
(G(n)+1)π

2j

] , (12)

for every non-negative integer j and every n ∈ {0, . . . , 2j−1}.
The map G is defined by G(0) = 0 and by recursively setting,
for ε = 0, 1 and ℓ = 0, 1, 2, . . .

G(2ℓ + ε) =

{

2G(ℓ) + ε if G(ℓ) is even,
2G(ℓ) − ε + 1 if G(ℓ) is odd.

(13)

The restriction of G to the set {0, 1, . . . , 2j − 1} is a permu-
tation of this set. This permutation induces a frequency
re-ordering of the Shannon wavelet packets FW S

j,n, n =

0, 1, . . . , 2j − 1.
When the wavelet packet functions are the functions

W S
j,n, it follows from Eqs. (7) and (12) that the cumu-

lant cum
S
j,n[k1, k2, · · · , kN ] of the discrete random process

returned at node (j, n) by the Shannon DWPT of X is such

that |cum
S
j,n[k1, k2, · · · , kN ]| 6 ‖γN‖∞2−j(N−1)/2. Given any

natural number N > 1, the rhs of the latter inequality does
not depend on n, k1, . . . , kN and vanishes when j tends to ∞.
Thus for every natural number N > 1, cum

S
j,n[k1, k2, · · · , kN ]

tends to zero uniformly in n, k1, k2, · · · , kN , when j tends to
infinity. In addition, the autocorrelation function RS

j,n re-

sulting from the projection of X on WS
j,n derives from Eqs.

(8), (12), and is given by (see [4])

RS

j,n[k] =
2j

π

∫

[

G(n)π

2j ,
(G(n)+1)π

2j

]

γ(ω) cos (2jkω)dω. (14)

If the spectrum γ of X is continuous at point a(λ), then,
given any path Pλ = (US, {WS

j,nλ(j)}j∈N) associated with

a binary sequence λ = (εℓ)ℓ∈N of elements of {0, 1},
limj→+∞ RS

j,nλ(j)[k] = γ(a(λ))δ[k] uniformly in k ∈ Z, where

a(λ) = lim
j→+∞

G(nλ(j))π/2j . (15)

The following result summarizes the foregoing analysis.

Lemma 1 If γ is continuous at a(λ), then, when j tend to

infinity, the sequence
(

cS

j,nλ(j)

)

j
converges in distribution to

a white Gaussian process with variance γ(a(λ)), the conver-

gence being in the following sense: For every x ∈ R
N and

every η > 0, there exists j0 = j0(x, η) > 0 such that, for
every j > j0 the absolute value of the difference between the
value at x of the probability distribution of the random vector

(cS

j,nλ(j)[k1], c
S

j,nλ(j)[k2], . . . , c
S

j,nλ(j)[kN ])

and the value at x of the centred N-variate normal distri-
bution N (0, γ(a(λ))IN ) with covariance matrix γ(a(λ))IN is
less than η.

4.3 Central limit theorems

Lemma 1 concerns ideal DWPT filters. In order to obtain a
similar result for filters of more practical interest, the DWPT
is now assumed to be performed by using decomposition fil-

ters h
[r]
ε , ε = 0, 1, that depend on a non-negative integer or

real value r such that

lim
r→∞

H [r]
ε = HS

ε (a.e.), (16)

where H
[r]
ε is the Fourier transform of h

[r]
ε and HS

ε is given
by Eq. (11); r is called the order of the DWPT filters. When
r tends to ∞, the DWPT filters with impulse responses

{h[r]
ε }ε=0,1 converge in the sense specified by Eq. (16) to

the Shannon DWPT filters {hS
ε}ε=0,1. On the other hand,

Eq. (16) can be regarded as a property of regularity for the
following reasons. According to [7], the Daubechies filters
satisfy Eq. (16) when r is the number of vanishing moments
of the Daubechies wavelet function; according to [8], Battle-
Lemarié filters also satisfy Eq. (16) when r is the spline order
of the Battle-Lemarié scaling function.

Let us consider decomposition filters satisfying Eq. (16).
Let λ be a binary sequence of elements of {0, 1}. The fol-
lowing result, similar to Lemma 1, describes the asymptotic

distribution of the discrete random process c
[r]

j,nλ(j) returned

at node (j, nλ(j)) when the resolution level j and the order
r of the filters increase. With the same assumptions and
notations as those used so far:

Proposition 1 Assume that γ is continuous at a(λ). Then,

when j and r tend to infinity, the sequence
(

c
[r]

j,nλ(j)

)

r,j
con-

verges in distribution to a white Gaussian process with vari-
ance γ(a(λ)) in the following sense: For every x ∈ R

N

and every η > 0, there exists j0 = j0(x, η) > 0 and
r0 = r0(x, j0, η) such that, for every j > j0 and every r > r0,
the absolute value of the difference between the value at x of
the probability distribution of the random vector

(c
[r]

j,nλ(j)[k1], c
[r]

j,nλ(j)[k2], . . . , c
[r]

j,nλ(j)[kN ])

and the value at x of the centred N-variate normal distri-
bution N (0, γ(a(λ))IN ) with covariance matrix γ(a(λ))IN is
less than η.
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Basically, this result is a consequence of the following
two facts. For every given natural number j and every

n ∈ {0, 1, . . . , 2j −1}, let cum
[r]
j,n[k1, k2, . . . , kN ] stand for the

cumulant of order N +1 of the wavelet packet coefficients of

X with respect to the packet W
[r]
j,n. First, if N > 1, we have

lim
j→+∞

(

lim
r→+∞

cum
[r]

j,nλ(j)[k1, k2, . . . , kN ]

)

= 0, (17)

uniformly in k1, k2, . . . , kN . Second, if γ is continuous at
a(λ), then

lim
j→+∞

(

lim
r→+∞

R
[r]

j,nλ(j)[k]

)

= γ(a(λ))δ[k], (18)

uniformly in k ∈ Z, with a(λ) given by Eq. (15). Note that
the latter statement follows from [4, Theorem 1].

Remark 1 If n = nλ(j) is a constant function of j, the be-

haviour of cum
[r]
j,n[k1, k2, · · · , kN ] when j tends to ∞ straight-

forwardly derives from Lebesgue’s dominated convergence
theorem applied to Eqs. (5), (6). However, Eqs. (17),(18)
suggest that r may play a role in the convergence of the cumu-
lant. The experimental results of the next section highlights
that this convergence actually accelerates when r increases.

5. EXPERIMENTAL RESULTS

Since Proposition 1 is asymptotic, our purpose is to experi-
mentally study how well the tendency to Gaussianity is satis-
fied when the input process is non-Gaussian and the DWPT
is performed with finite values for the resolution level and
the order of decomposition filters. The Daubechies filters
are used to perform the DWPT. They converge to the Shan-
non filters when the number r of vanishing moments of the
Daubechies mother wavelet increases. As above, X(t) stands
for the centred Hilbertian random process to decompose.
In our experiments, X(t) is Generalized Gaussian (GG).
This means that, for every t ∈ R, X(t) follows the Gen-
eralized Gaussian Distribution (GGD) with scale α, shape
β and zero mean. For each t ∈ R, the Probability Den-
sity Function (PDF) of X(t) is fα,β defined for every real

value x by fα,β(x) = β
2αΓ(1/β)

exp
(

−(|x|/α)β
)

where Γ is

the standard Gamma function. The value of the GGD stan-
dard deviation is σ = α

√

Γ(3/β)/Γ(1/β). In what follows,

α =
√

Γ(1/β)/Γ(3/β) so that σ = 1. When the shape
parameter β equals 2, the GGD is Gaussian; when β de-
creases (from 2 to 0), the PDF of the GGD is sharper,
and sharper (see figure 1); when β = 1, the GGD is the
Laplacian distribution. Moreover, in our experiments, the
samples X(1), X(2), . . ., X(N) of the GG process X(t)
are correlated. In fact, these samples are synthesized by
filtering a discrete sequence of independent and identically
GG distributed random variables through an auto-regressive
(AR) filter of order 1, and such that the spectrum of X(t)
is γ(ω) = (1 − µ)2/|1 − µ exp(−iω)|2 where 0 < µ < 1. If α
and β are the parameters of the GG random variables used
to synthesize the samples of X(t), we henceforth say that
the output discrete process X(t) is AR(1)-GG. Experimen-
tal tests are carried out with µ = 0.5, 0.75, 0.9, 0.95. The
spectra corresponding to these values are those of figure 1.

The experiments are conducted with 100 independent
random copies of the random vector formed by the N sam-
ples X(1), X(2), . . ., X(N) with N = 220. Each copy is used
as an input of the DWPT. We then consider the four wavelet
packet paths associated with the sequences λq = (δ[q−ℓ])ℓ∈N,
for q = 0, 1, 2 and 3. For these sequences, and taking into ac-
count Eq. (9), we have nλ0(ℓ) = 0 for every natural number
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Figure 1: Left: GGD with unit variance and shape β =
2, 1, 0.5. Right: coloured GG Spectrum for some values of µ.

ℓ, and for q = 1, 2, 3:

nλq (ℓ) =

{

0 for ℓ = 1, 2, · · · , q − 1,
2ℓ−q for ℓ = q, q + 1, · · · .

It follows that G(nλ0(ℓ)) = 0 and that

G(nλq (ℓ)) =

{

0 for ℓ = 1, 2, · · · , q − 1,
2ℓ−q+1 − 1 for ℓ = q, q + 1, · · · ,

for q = 1, 2, 3. According to Eq. (15), a(λ0) = 0 and
a(λq) = π/2q−1 for q = 1, 2 and 3. Table 1 gives the values
γ(a(λ)) for the four test sequences. For every path λ among
those introduced above, the Kolmogorov-Smirnov (KS) test
with significant level 5% is used to decide whether the sam-

ples (c
[r]

j,nλ(j)[k]/
√

γ(a(λ)))k, returned by the DWPT for a

given copy, satisfy the null hypothesis (that is, follow the
normal distribution N (0, 1)), or not (alternative hypothesis).
The KS acceptance rates obtained are presented in table 2.
By increasing the resolution level j when the order of the
filters is constant and equals r = 1, the KS acceptance rate
increases for most of the DWPT paths. When the resolu-
tion is fixed to j = 6, it suffices to increase the order r to
also increase this acceptance rate. For the sequences under
consideration and for AR(1)-GG processes with 1 6 β 6 2
and 0 < µ < 0.9, normality can reasonably be considered to
be attained when the resolution level j is 6 and the order
of the Daubechies filters is r = 7. The less satisfactory re-
sults occur for large values of µ or small values of β. When
µ is large, the spectrum becomes rather sharp around the
null frequency (see figure 1 for µ = 0.90, 0.95); on the other
hand, when β is small, the PDF of the GGD is still sharper
at the origin (see figure 1 for β = 0.5). However, even for
large values of µ and small values of β, increasing both the
order of the filters and the resolution level improves the KS
acceptance rate (see table 3).

As an illustration, figure 2 shows histograms of the
DWPT coefficients obtained at resolution level 6, by us-
ing Daubechies filters of order 7. The decomposition con-
cerns the samples of an AR(1)-GG process with β = 1 and
µ = 0.75. These histograms are compared with the PDF of
the Gaussian limit distribution.

It follows from the results above that significant accep-
tance rates are attained by increasing first the resolution
level and then the order of the filters. This confirms the
theoretical results. The order of the filters speeds up the
convergence to normality even for the path associated with
the null sequence λ0 (see remark 1). This can be noticed by
comparing, at resolution level j = 6, the acceptance rates
obtained for r = 1 to those obtained for r = 7 in tables 2
and 3 for Pλ0 .
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Table 1: Values γ(a(λ)) for the four test sequences.

Path

Pλ0
Pλ1
Pλ2
Pλ3

µ = 0.5 µ = 0.75 µ = 0.9 µ = 0.95

1 1 1 1
0.1111 0.0204 0.0028 0.0007
0.2052 0.0412 0.0057 0.0014
0.4798 0.1332 0.0201 0.0048

Table 2: KS test acceptance rates for the normal distribu-
tion N (0, 1) of the DWPT coefficients returned at resolution
level j = 3, 6 for different DWPT paths. The DWPT input
process is AR(1)-GG with α such that σ = 1.

Coloured GG process, with β = 1.5

Path

Pλ0
Pλ1
Pλ2
Pλ3

µ = 0.5

j = 3 j = 6 j = 6
r = 1 r = 1 r = 7

0% 95% 98%
0% 91% 98%
0% 95% 88%
0% 0% 86%

µ = 0.75

j = 3 j = 6 j = 6
r = 1 r = 1 r = 7

0% 42% 99%
0% 52% 96%
0% 37% 86%
0% 14% 65%

µ = 0.9

j = 3 j = 6 j = 6
r = 1 r = 1 r = 7

0% 0% 19%
0% 0% 94%
0% 0% 91%
0% 0% 53%

Coloured GG process, with β = 1

Path

Pλ0
Pλ1
Pλ2
Pλ3

µ = 0.5

j = 3 j = 6 j = 6
r = 1 r = 1 r = 7

0% 84% 94%
0% 94% 96%
0% 95% 82%
0% 0% 71%

µ = 0.75

j = 3 j = 6 j = 6
r = 1 r = 1 r = 7

0% 31% 96%
0% 67% 93%
0% 56% 78%
0% 3% 50%

µ = 0.9

j = 3 j = 6 j = 6
r = 1 r = 1 r = 7

0% 0% 21%
0% 0% 92%
0% 0% 89%
0% 0% 41%

Table 3: KS test acceptance rates for the normal distribu-
tion N (0, 1) of the DWPT coefficients returned at resolution
level j = 6, 7 for different DWPT paths. The DWPT input
process is AR(1)-GG with α such that σ = 1.

Coloured GG process, with β = 0.5, µ = 0.95

Path

Pλ0
Pλ1
Pλ2
Pλ3

j = 6 j = 6 j = 7
r = 7 r = 20 r = 20

0% 0% 45%
78% 86% 91%
2% 30% 79%
0% 4% 35%

6. CONCLUSION

In this paper, the tendency to normality of the wavelet
packet coefficients of a strictly stationary random pro-
cess has been studied. We have considered DWPT filters
whose Fourier transforms converge almost everywhere to the
Fourier transform of the Shannon filters. This type of fil-
ters makes it possible to state results that are valid for any
path of the DWPT. Daubechies and Battle-Lemarié filters
are examples of such filters. The asymptotic distribution of
the wavelet packet coefficients is normal with variance equal
to the value taken by the input process spectrum at some
specific frequency. This frequency can be computed with
respect to the nested supports of the Fourier transforms of
the wavelet packets associated with the chosen path. The
results of this paper may thus be applicable to several sig-
nal processing fields, data analysis or communication appli-
cations. Detailed proofs and comments of the results pre-
sented above will be given in a forthcoming paper in the
general framework of M -band wavelet packet transforms.
A preliminary version of this paper is downloadable from
http://fr.arxiv.org/abs/0802.0797.
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Figure 2: Histograms of the DWPT coefficients, at resolution
level 6, using Daubechies filters of order 7. The decompo-
sition is applied to samples of an AR(1)-GG process with
β = 1 and µ = 0.75. The limit distribution N (0, γ(a(λ)))
where a(λ0) = 0 and a(λq) = π/2q−1 for q = 1, 2 and 3 is
represented in (red) continuous line.
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