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ABSTRACT

The Texture Fragmentation and Reconstruction (TFR) algo-
rithm has been recently proposed for the unsupervised hier-
archical segmentation of textures. It is based on a hierarchi-
cal image model, where textures are characterized in terms
of their spatial interaction properties, modeled by means of
a set of Markov chains, each one associated with a major
spatial direction. The TFR algorithm fits the image to the
hierarchical model by means of a split-and-merge procedure
where the first step (fragmentation) aims at extracting the el-
ementary texture states, which are progressively merged in
the second step (reconstruction), so as to obtain a hierarchi-
cal nested segmentation.

Although TFR results are usually very good, it has been
sometimes observed a bias towards the undersegmentation
for complex images. Here, we analyze this phenomenon and
propose the use of an improved fragmentation step, where
would-be elementary states are ranked based on a suitable
measure of their reliability and possibly purged. Experimen-
tal results validate the effectiveness of the new algorithm.

1. INTRODUCTION

Image segmentation has been intensely studied in recent
decades because of its importance in such diverse fields as
medical imaging, security, remote sensing, industrial au-
tomation, etc. Even so, in many cases it still remains an
open problem, as happens with textured images where the
spatial interactions may cover long ranges, asking for high-
order complex modeling. Due to its complexity, the tex-
ture segmentation problem is usually split in two tasks, tex-
ture feature extraction and clustering, the first of which, es-
pecially relevant, has received considerable attention in the
past. Tuceryan and Jain [1] divide feature extraction methods
into four categories: statistical, model-based, signal process-
ing, and geometrical. Typical tools used in the various cate-
gories are, respectively, co-occurrence matrices [2], Markov
random field [3] and auto-regressive models [4], wavelet [5]
or Gabor [6] filtering, and fractal dimension [7].

It is widely recognized that a visual texture, which hu-
mans can easily perceive, is very difficult to spot automat-
ically. The main problem is that texture definition itself is
quite debated, depending often on the application or on dif-
ferent perceptual motivations, and there is no general agree-
ment on it. Even more challenging, there are many instances
where the textural properties may completely change de-
pending on the scale of observation, in which case unsu-
pervised segmentation becomes an ill-posed problem unless
additional indications come from the application domain.
When no such information is available, the most reason-
able output is a hierarchical segmentation, that is, a stack

of nested segmentations, leaving to the user the freedom to
choose the one that better fits the application requirements.

In this work, texture segmentation is approached through
the recently proposed [8] Hierarchical Multiple Markov
Chains (H-MMC) model. In H-MMC the image is seen as
a complex collection of textures, emerging at different scales
of observation. At each scale of the hierarchy, spatial interac-
tions among textures are described through a set of Markov
Chains, and then taken into account to decide which textures
should be merged at the next higher level. In [8] a seg-
mentation algorithm was also proposed, named Texture Frag-
mentation and Reconstruction (TFR), which builds upon the
hierarchical image representation provided by the H-MMC
model. It first singles out the homogeneous elementary com-
ponents of the textures and then proceeds to merge them un-
til all textures of interest emerge, possibly at multiple scales.
The TFR presents a number of interesting properties: it is
able to recognize macro-texture at various scales of obser-
vation, is completely unsupervised, and hence applicable in
many different domains, and its computational complexity is
quite limited. Moreover, its accuracy appears to be superior
to most texture segmentation techniques [9].

Among its drawbacks, one of the most disturbing is cer-
tainly a bias towards the under-segmentation of images, espe-
cially in the presence of very complex textures. In this work
we address this problem, which appears to be mainly related
to the presence of elementary texture components that are not
really homogeneous, and propose an improved version of the
algorithm in which such components are analyzed, ranked
on the basis of their homogeneity, and possibly further frag-
mented, before the merging process begins.

The main ideas of the H-MMC model and of the TFR
segmentation algorithm are presented in Section 2, Section 3
analyzes in more detail the undersegmentation problem and
the proposed solution, and finally, Section 4 presents experi-
mental results and draws conclusions.

2. HIERARCHICAL TEXTURE MODEL AND
SEGMENTATION STRATEGY

We will try to convey the main concepts of interest through
a running example, the segmentation of the simple image
shown in Fig.1(a), a urban residential area, with a rectangu-
lar road network and regular blocks comprising both build-
ings and green spots. Our first processing step is a “conven-
tional” segmentation [10] based only on spectral information.
Once applied to our image, the segmenter outputs the three-
class map shown in Fig.1(b), a good description of the image
in terms of its local properties but certainly unable to catch
its dominant structures, the blocks and the road networks.
Such structures emerge, however, if the green and light-gray
classes are merged, as shown in Fig.1(c). These two alterna-



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

0.94 0.90
A&m oom,oz
roads .
0. 92 00 O 0.92 0.86 G M 9, 0.88
buildings  green spots
(d) (e) ®

Figure 1: HMMC model: urban area sample (a); 3-state (b)
and 2-state (c) maps; states hierarchy (d); 3-state Markov
chains for north (e) and south-east (f) directions.

tive segmentations of the image can be associated with differ-
ent subtrees of a tree of classes as shown in Fig.1(d): by using
all the leaves of the tree, namely, all the original classes, we
obtain the original map of Fig.1(b), while pruning the two
rightmost branches produces the map of Fig.1(c). The whole
tree is therefore associated with a hierarchy of segmentation
maps, or image descriptions, among which, one can select
the most appropriate for the application needs.

Such a hierarchical description of the image allows one
to extract quite different, and valuable, pieces of information,
by just looking at different scales of segmentation. Of course,
an automatic tool is necessary to decide which classes should
be merged each time or, in other words, which classes can be
regarded as different components of the same textured re-
gion. Such decisions depend only on spatial properties, and
hence the key for texture description in this framework will
be the analysis of the spatial interactions among the different
classes.

To this end, let us scan the map of Fig.1(b) pixel-wise
along a given direction, and take note of the classes encoun-
tered along the path. In a probabilistic setting, the result-
ing sequence can be interpreted as a realization of a Markov
chain, where the classes take on the role of states, and the
transition probabilities are computed as relative frequencies
of transition among classes. By repeating this modeling step
for a set of significant directions, (for example, north, north-
east, etc.), we obtain an accurate description of inter-class
spatial dependencies.

More formally, let Q be the label set for the segmentation
mabp, then, to each spatial direction, j =1,...,8, we associate
a Markov chain described by its transition probability (TP)
matrix P; = {p;(0'|@)} where:

A
p;(0'|o) = Pr(x(H_l)j =0 |x=0) VYo,0'eQ (1)
where x; € Q is the state of pixel s of the map, (s+ 1); in-

dicates the pixel following s along the direction j, and the

probabilities are estimated as frequency ratios on the map.

In the example of Fig.1, we readily compute by (1) the
8 three-state TP matrices for the map of Fig.1(b), thus ob-
taining a set of Markov chains, two of which, corresponding
to the north and south-east directions respectively, are shown
in Fig.1(e)-(f). Such a representation provides valuable in-
formation about the spatial distribution of elements in this
textured image. Intrastate TPs, for example, give indications
about the average shape and orientation of the objects of a
given class, as for the “roads” state, where the TPs suggest
that its elements are characterized by a dominant vertical di-
rection. Interstate TPs, instead, describe the frequency of
transitions between different states along the selected direc-
tions, and hence give information on their spatial contiguity.
For example, the relatively large TPs between the “building”
and “green spots” states (0.05 and 0.09, Fig.1(e)-(f)) show
that a tight interaction exists between these states, which
could be possibly regarded as different elements of a single
texture.

The analysis of all the TP matrices allows one to build a
tree like that of Fig.1(d) (we use only binary trees for the sake
of simplicity), by recursively merging couples of terminal
states! until all nodes collapse in the tree root. At each step,
we should single out and merge the classes that exhibit the
strongest mutual interaction, since they are the most likely to
belong to the same textured area. To this end, for each ter-
minal class @ we define a synthetic parameter called Texture
Score.

p(®)
max ., P(@'|®) ’

which measures the “completeness” of a texture, based on its
spatial scale and the interactions with neighboring classes:
incomplete classes (small TS) will be merged first, so as
to obtain complex textures that are more and more self-
consistent (large TS).

To understand why the TS measures completeness, let us
rewrite it as the product of three terms

I p(a)e)
p(@lo) max,,p(e|w)’

TS? = 2)

TS = p(w) - 3

where p(®|®w) = 1 — p(w|®) is the probability of leaving
state @ in any direction. Such terms take into account, re-
spectively, the size of class @, its compactness, and the pres-
ence of a dominant neighboring class. Classes with very
small TS are typically small (small p(w)), dispersed over
a large number of even smaller fragments (large p(®|w)),
and with a single dominant neighbor (max p(0'o) ~
p(®|w)). Hence, they are texture fragments that should be
merged with some larger neighbors. On the contrary, a large,
compact class, with no dominant neighbor, and hence a large
TS, is probably a complete texture that should be considered
for merging only in the last steps of the process (although it
can always attract other classes).

Therefore, at each step of the merging process, the class
® with the smallest score is merged with its dominant neigh-
bor @*, singled out as

®* = argmax p(®|®) 4)
O£

The same entity can be regarded as an image region, a segmentation
class, a state of a Markov chain, or a tree node, depending on the context,
and then, from now on, we will use such terms interchangeably.
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Figure 2: A complex image (a) composed of two real tex-
tured patches (forest and urban area), and its four-class seg-
mentation (b).

grass trees roads

green spots  buildings

Figure 3: A tree-structured description for image 2(a).

TP matrices and scores are then computed for the merged
classes and their neighbors (a task of negligible complexity,
since it is carried out at the class-level with no pixel-wise
computation) and the process goes on recursively until a sin-
gle node is reached.

3. SELECTION OF RELIABLE INITIAL STATES

In last Section, we described the TFR algorithm as if the “col-
ors” found in the initial segmentation were the elementary
classes from which the merging process could start. How-
ever, this is usually not the case as we will show by consid-
ering the image of Fig.2(a) which is the synthetic compo-
sition of two different textured environments, “forest” and
“urban”. A human interpreter would easily provide a de-
scription of the image by the hierarchical structure of Fig.3,
where the two main environments correspond to the left and
right subtrees departing from the root, and each subtree com-
prises some component classes of its own. However, if we
apply a color quantization algorithm to this image, we end
up with the 4-class map shown in Fig.2(b), which highlights
an important problem: the light-green class of the map cor-
responds to two different semantic classes, belonging to two
different textures, namely, the “grass” class for the forest and
the “green spots” class for the urban area; something simi-
lar happens for the “dark grey” class too, which comprises
the road network along with some darker buildings within
the blocks. The segmentation algorithm, working only on
spectral features, has no way to tell apart these two classes:
nonetheless they should be distinct from the beginning in or-
der to recover two different high-level textures after recursive
merging.

The use of all connected fragments of the image as initial
classes might then look as a reasonable alternative, but this
must be ruled out, not so much for the significant increase
in complexity, as for the fact that such isolated fragments
would lack any spatial structure, and could not become reli-

(d) )

Figure 4: Under-segmentation error: data (a); ground-truth
(b); 12-class (c) and 4-class (d) segmentations; an unreliable
(e) and a reliable (f) initial state.

able seeds of larger textures.

In [8] it was therefore proposed to perform a further split
of the initial color states by first collecting all the isolated
fragments having the same color, and then grouping them
again in a small number of clusters based on their spatial
characteristics, including their shape, orientation, and espe-
cially spatial context, in terms of directional adjacency with
other color states. In fact, as it is clear from Fig.2 itself, the
grass and green spots semantic classes can actually be dis-
tinguished from one another if we take into account their
different spatial properties, and in particular the fact that
“grass” regions border mainly regions of the “trees” class,
while “green spots” are typically adjacent to regions of the
“roads” and “buildings” classes.

To take into account such properties, for each connected
region, a set of transition probabilities is computed, p j(a)’ |@)
similar to those defined in equation 1, but for the fact that the
initial state @ is now given, being the color of the region of
interest. Such probabilities form a vector that, after a prin-
cipal component analysis meant to keep only a few relevant
components, becomes a feature vector F,‘(" that characterizes
the k-th fragment of color @ in terms of its size, shape, and
spatial interaction with other fragments, and that will be used
for the subsequent K-means clustering.

The well-known problem with clustering is that the num-
ber of clusters in data is not known in advance and difficult
to estimate. In simple images, most colors are well described
by just one or two clusters, but it can also happen that a single
color corresponds to a very large number of clusters, maybe
also for the presence of data outliers. Whenever the number
of clusters is underestimated, errors may occur, mostly con-
sisting in under-segmentation. Indeed, if a cluster with frag-
ments belonging to two different textures is identified as an
elementary state, and is a large-scale state, with high score, it
will likely absorb other states from both textures during the
merging process, producing a single texture instead of two.

An example of this phenomenon is shown in Fig.4. The
image to be segmented (a) is a synthetic mosaic of different
textures, with the corresponding ideal segmentation shown
in (b). When the merging process is stopped at 12 classes
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the corresponding segmentation map shown in Fig.4(c) is al-
ready unsatisfactory, with a very large segment (in light grey)
spanning three different textures 7}, 7, and T;. Of course,
such a problem cannot be solved by subsequent merging
steps and eventually the 4-class segmentation in (d) is the
best we can have starting from (c) but misses two classes out
of six. The origin of this problem is the presence, from the
beginning, of several elementary states shared by two tex-
tures, some corresponding to white regions (linking 7; and
T,) and others to black ones (linking 7| and T3). One of such
states which contributes to the fusion of textures 7} and 7, is
shown for example in part (e). On the other hand, the pres-
ence of reliable high-score initial states, like the one shown
in part (f), is fundamental for the recovery of the correct tex-
tures, since they strongly attract smaller regions, and this is
the reason why some form of clustering is needed anyway.

Once identified the problem, we experimented with sev-
eral solutions, first trying to find a reasonable rule to select
adaptively for each color the number of clusters to use in the
K-means, then testing different clustering techniques, such as
Fuzzy C-means or mean-shift procedures, always with mixed
and inconclusive results.

Eventually, we devised a solution strictly based on the
observations made above. We keep using the K-means clus-
tering algorithm, with a fixed number of clusters decided in
advance and equal for all colors, since more complex tech-
niques do not seem to provide any benefit. Then, for each
cluster @ we compute a reliability figure R,: when such
a figure falls under a given threshold the cluster is consid-
ered unreliable and totally disaggregated, namely, each com-
ponent fragment becomes a different initial state. This is
not really a problem since such isolated fragments will typi-
cally have a small texture score and will be soon absorbed by
neighboring reliable states. Instead, it is important to guar-
antee that enough reliable states, like the one of Fig.4(f), sur-
vive to become seeds of well structured textures. To this end,
the reliability threshold is set so that the reliable states cover
an aggregate area of at least 50% of the image.

The reliability figure R, is defined by

IR B
Ry = we Y WeIFY —F°|, (5)
=1

where N, is the number of fragments in cluster @, F}’ is the
feature vector of the k-th fragment, F© the average feature
vector of the cluster, and the Wk‘" are suitable weights, with
W® their sum. In practice, the inverse of R, measures the
dispersion of the feature vectors around their means. The
weights were originally set equal to the fragment areas A,
to account for the fact that the k-th fragment is representative
of AP pixels, but then, supported by the experimental results,
we switched to the log of the areas to avoid that large domi-
nant fragments weigh too much in the overall figure, hiding
the risks coming from smaller fragments.

It is important to underline that all clusters, irrespective
of the original color, are put in the same list, and sorted ac-
cording to their reliability figures. Therefore, it can legiti-
mately happen that all clusters of the same color are declared
unreliable and disaggregated, something that could not have
been achieved by simply changing the clustering algorithm.

4. EXPERIMENTAL RESULTS AND COMMENTS

The basic version of the TFR has been already assessed and
compared with several reference techniques by means of ex-
periments on the Prague benchmark [11]. Results, available
on the same benchmark website, and extensively discussed
in [9], are quite favorable to the TFR algorithm. More re-
cently, the algorithm has been used successfully [12, 13] for
the segmentation of real remotely sensed images.

In this work we will therefore focus our attention on the
effectiveness of the improved solution by comparing experi-
mental results on the 512 x 512-pixel color texture mosaics
of the Prague benchmark with those of the original TFR. Be-
fore turning to segmentation results, it is worth underlining
that the new version of the algorithm has about the same
computational complexity of the original TFR (about 20 sec-
onds of CPU time on a notebook with a 1.66 GHz processor
for the test images) which is almost entirely due to the pixel-
based processing for the initial color class formation.

In Fig.5 we show some insightful results over mosaics
that the TFR was not able to segment correctly, and that the
proposed solution, instead, deals with successfully?. For the
first image, both algorithms identify correctly the six tex-
tures, but the original TFR has a much higher misclassifica-
tion rate, especially over the two most complex textures, T;
and 7,. In the three subsequent images a more serious prob-
lem of under-segmentation has occurred with the original al-
gorithm. For the second image (already used in the example
of Fig.4) TFR detects only four out of six classes, while the
new algorithm successfully detects all of them, even if with
some residual artifacts. Likewise, for the third image, the old
version is able to single out only five of the eight textures
while the proposed solution captures them all.

For the last image, instead, the interpretation of results
is a bit more complex, since the TFR segmentation map ex-
hibits both under- and over-segmentation. In fact, textures
T; and T, are merged, and the same happens partially with
texture 7 and T; at the same time, both 7, and T are split
over two classes. Just as before, the modified version of TFR
solves satisfactorily the under-segmentation phenomena. As
for the oversegmentation, texture Ty is now correctly rep-
resented, while the problem persists with 7, and there is
probably little hope to do a better job since the texture it-
self is rather adverse and even a human observer may choose
to identify two separate textures in it. In addition, also tex-
ture 75 is now oversegmented, probably as an unwanted ef-
fect of the state ranking procedure which has disaggregated
too many states belonging to that texture. Nonetheless, the
9-class partition obtained with the new algorithm is totally
compatible with the 7-class ground-truth, which could be ob-
tained by means of just two suitable merging steps. Unfortu-
nately, in this case the merging process, driven by the texture
score, gives higher priority to the merging of other classes
(T, absorbed by T}) before recomposing T; and 7.

In conclusion, the figure R, proposed here seems to be
a good indicator of the reliability of the initial states. By
removing all unreliable states singled out by such a measure,
while at the same time keeping enough reliable states to work
as texture seeds, most of the undersegmentation phenomena
disappear.

2It is worth underlining that the new solution provides the same good
results as the TFR for the other mosaics not shown here.
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Figure 5: From left to right: texture mosaic, ground-truth, segmentations by original and (resp.) proposed algorithm.

As the last experiment indicates, future work should fo-
cus on the merging process, since the image structure is not
always correctly identified. In particular, the case of texture
T, shows an intrinsic weakness of the texture score measure
which allows inter-texture fusions to take place before intra-
texture ones, only because of the region scale. In fact, since
the subtextures of 7, happened to occur at a larger scale than
the whole texture Ty, the latter was subject to merging before
texture 7, was recomposed. We are currently investigating
the use of an adaptive texture score formula, where the rel-
ative weights of spatial scale (first two factors in (3)) and
context (last factor) change as a function of the scale of the
textures currently detected.

REFERENCES

[1] M.Tuceryan and A.K.Jain, “Texture analysis,” The
Handbook of Pattern Recognition and Computer Vision,
2nd Edition, C.H.Chen, L.F.Pau, P.S.P.Wang, Ed., River
Edge, NJ: World Scientific, pp.207-248, 1998.

[2] R.M.Haralick, “Statistical and structural approaches to
texture,” Proc. of the IEEE, pp.786-804, May 1979.

[3] S.Krishnamachari and R.Chellappa, “Multiresolution
Gauss-Markov random field models for texture segmen-
tation,” IEEE Trans. Im. Proc., pp.251-267, Feb. 1997.

[4] M.Haindl and S.Mikes, “Colour texture segmentation
using modelling approach,” In Proc.3th ICARP, LNCS
3687, pp.484-491, Bath, UK, 2005.

[5] M.Unser, “Texture classification and segmentation using

wavelet frames,” IEEE Trans. Im. Proc., pp.1549-1560,
Nov. 1995.

[6] O.Pichler, A.Teuner and B.J.Hosticka, “An unsupervised
texture segmentation algorithm with feature space reduc-
tion and knowledge feedback,” IEEE Trans. Im. Proc.,
pp-53-61, Jan. 1998.

[7] B.B.Chaudhuri and N.Sarkar, “Texture segmentation us-
ing fractal dimension,” IEEE Trans. PAMI, pp.72-717,
Jan. 1995.

[8] G.Scarpa and M.Haindl, “Unsupervised texture segmen-
tation by spectral-spatial-independent clustering,” Proc.
ICPR 2006, pp.151-154, Hong Kong, China, 2006.

[9] G.Scarpa, M.Haindl and J.Zerubia “A hierarchical finite-
state model for texture segmentation,” Proc. ICASSP
2007, pp.1-1209-1212, Honolulu, HI (USA), April 2007.

[10] C.D’Elia, G.Poggi and G.Scarpa, “A tree-structured
Markov random field model for Bayesian image segmen-
tation,” IEEE Trans. Im. Proc., pp.1259-73, Oct. 2003.

[11] S.Mike§ and M.Haindl, “Prague texture segmentation
data generator and benchmark,” ERCIM News, number
64, pages 67-68, 2006.http://mosaic.utia.cas.cz

[12] G.Scarpa, M.Haindl and J.Zerubia, “A hierarchical tex-
ture model for unsupervised segmentation of remotely
sensed images,” Proc. SCIA 2007, pp.303-312, 2007.

[13] R.Gaetano, G.Scarpa and G.Poggi, ‘“Hierarchical
texture-based segmentation of multiresolution remote
sensing images,” to appear in /EEE Trans. Geosci. Rem.
Sens.




