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ABSTRACT

In this paper, we show that the Whittaker-Shannon (WS) sam-
pling theory can be modified for the reconstruction of non-
bandlimited signals. According to the uncertainty principle,
non-bandlimited signals have finite time support and thus are
more common in practical application. Prolate spheroidal
wave functions also called Slepian functions have finite time
support and maximum energy concentration within a given
bandwidth, so instead of infinite length sinc functions, we
consider Slepian functions. We show that by projecting non-
bandlimited signals onto the space represented by an ortho-
normal Slepian basis the minimum sampling rate can be re-
duced nearly by half, with no aliasing. Moreover, the recon-
struction error is much lower than the one obtained by the
WS theory. In some cases, depending on the desired recon-
struction accuracy, it is possible to lower the rate even fur-
ther. Simulations show the efficiency of the Slepian functions
in the reconstruction of uniformly or non-uniformly sampled
bandlimited or non-bandlimited signals.

1. INTRODUCTION
The Whittaker-Shannon (WS) sampling theory is crucial in
signal processing and communications. It states that a ban-
dlimited signal can be reconstructed from its samples as an
expansion using an ortho-normal sinc basis. In practice, most
signals are time-limited which means they cannot be ban-
dlimited due to the uncertainty principle, so it is necessary to
apply an antialiasing low-pass filter to satisfy the bandlimited
condition.

Over the past 60 years, a great deal of research has
been done to improve the WS theory. Some of the exten-
sions of the theory have been about sampling band-pass sig-
nals [1], considering non-uniform sampling [2], and joint
time-frequency methods for taking into account the non-
stationarity of signals [3]. New methods, such as compres-
sive sensing and random filtering exploit the sparseness of
the signals to reduce sampling rate [4, 5, 6]. One recent ap-
proach applies wavelet structures [7] to develop new sam-
pling and reconstruction techniques. In our contribution, we
try to keep the original simplicity of the sampling theory as
much as possible while obtaining satisfactory reconstructions
for not necessarily bandlimited signals. One simple modifi-
cation in the WS theory is to interpret the WS sampling (the
anti-aliasing pre-filtering and the sampling) as an orthogonal
projection operator [8]. This operator provides a minimum
error band-limited approximation of a not necessarily ban-
dlimited signal onto the space of bandlimited signals. The

reconstructed signal, as an expansion of sinc functions, can
be made as close as possible to the original signal without be-
ing the exact original signal [8]. However, the energy of the
sinc function is not concentrated in time, and truncated or
windowed sinc functions do not satisfy the partition of unity
condition. As a result, the reconstruction error never goes to
zero even if the sampling interval tends to zero, indicating
that the sinc basis is not the appropriate basis for expansion.

In this paper, we will consider Slepian functions [9, 10]
as orthogonal basis for sampling. These functions are time-
limited and maximally concentrated within a given band-
width which make them highly suitable for replacing the sinc
basis. We will show that it is possible to reduce the sampling
rate and reconstruction error both for bandlimited and non-
bandlimited signals. The order of the Slepian expansion can
be easily seen in the frequency domain, without consider-
ing the time-frequency representation [12]. Once the projec-
tion of the input signal onto the Slepian basis is obtained,
we consider the cases of uniform and non-uniform sampling
and reconstruction. When compared to the WS results, our
procedure displays two distinctive advantages. First, it pro-
vides a similar structure to the WS theory with reduction in
the number of samples needed for reconstruction and smaller
reconstruction error with no aliasing. The other advantage is
its connection with the compressive sensing and the random
filtering, without the requirements of complicated algorithms
for the reconstruction.

The rest of the paper is organized as follows: in Sec-
tion 2, we provide a brief introduction to the Slepian func-
tions, explain the projection method for bandlimited and non-
bandlimited signals, show how to reconstruct signals from
uniform or non-uniform sampling and provide an error anal-
ysis. Simulations and conclusions follow.

2. SLEPIAN BASIS FOR SAMPLING THEORY

According to the WS sampling theory, a bandlimited analog
signal x(t) with maximum frequency fmax (i.e.,|X(Ω)| = 0
for |Ω| > 2π fmax) can be sampled uniformly, x(t)|t=nTs , with
sampling rate

fs =
1
Ts
≥ 2 fmax

and reconstructed from its samples {x(nTs)} by using an
ideal low-pass filter with the sinc function as its impulse re-
sponse. Thus a π band-limited signal x(t),sampled uniformly
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at a sampling rate of fs, can be reconstructed exactly as

x(t) =
∞

∑
k=−∞

x(kTs)S(t− kTs) (1)

where {S(t−kTs) = sin(π(t−kTs))/(π(t−kTs))} is the sinc
basis used to expand x(t) with coefficients {x(kTs)}. The
sinc function is well localized in frequency but has poor time
decay. In the case of non-bandlimited signals, it is neces-
sary to apply an ideal low-pass filter before sampling to sup-
press aliasing. A time-limited signal cannot be expressed as
in Eq.(1), since a significant part of the energy in the sinc
functions would be out of the signal time limits. This is a
serious computational handicap for the WS sampling theory
since there are no bandlimited functions that are compactly
supported [8] as a result of the Paley-Wiener theorem.

The reconstruction error in the WS theory is entirely due
to the out of band portion of the signal. Suppose that we
choose a certain frequency ΩM and consider two possible
sources for reconstruction error: (i) ΩM is not the maximum
frequency of the analog signal x(t) being sampled, (ii) there
is aliasing when the signal is sampled usingΩM as the wrong
maximum frequency. If the Fourier transform of the analog
signal, x(t), and the reconstructed signal, x̂(t), are X(Ω) and
X̂(Ω), respectively, and Ex is the total energy of x(t) then the
error for case (i) is

ε1 =
2
Ex

∫ ∞

ΩM
|X(Ω)|2dΩ (2)

and for case (ii)

ε2 =
1
Ex

∫ ΩM

−ΩM
|X̂(Ω)−X(Ω)|2dΩ (3)

Then the total normalized reconstruction error would be

ε =
1
Ex

∫ ∞

−∞
|x(t)− x̂(t)|2dt

=
1
Ex

∫ ∞

−∞
|X(Ω)− X̂(Ω)|2dΩ

= ε1+ ε2 (4)

Thus, whenever the signal being sampled is band-limited
and ΩM = Ωmax, then all of the above errors are zero, i.e.,
the reconstruction is perfect. In the case of non-bandlimited
signals, or when the ΩM does not coincide with the maxi-
mum frequency of the signal there will certainly be signifi-
cant reconstruction errors. A relevant question is then what
if x(t) is time-limited and we could project it onto a basis
of time-limited functions maximally concentrated within a
given bandwidth. Then the error ε1 and the total normal-
ized error ε would tend to zero which also results in ε2 being
zero or close to zero [12], implying satisfactory reconstruc-
tion with no aliasing effects. This corresponds to the case
when the Slepian functions are used.

Derived according to the idea of maximum energy con-
centration, the most important property of Slepian functions
is that among all the orthogonal basis defined in a time-
limited domain [−T,T ], they have the highest energy concen-
tration in a band of frequencies (−W,W ). This minimum un-
certainty property in the sense of energy concentration is very
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Figure 1: Slepian functions (top) and their spectra (bottom).

useful for efficient signal representation, modeling, filter de-
sign [11], theory of laser resonators, etc. Figure 1 shows the
first three Slepian function and their spectra for arbitrarily
chosen length N = 4096 and a bandwidth of 32π/N. The ap-
plication of Slepian functions to sampling was initially con-
sidered in [10]. In this paper, we extend the application to the
non-uniform sampling of non-bandlimited signals and show
that Slepian bases allow us to reduce the minimum Nyquist
rate by at least half while having smaller reconstruction er-
rors than the ones obtained using the conventional sinc func-
tions. The Slepian functions {ϕn(t)} form an orthogonal and
complete set for functions in L2(−T,T ), for finite as well as
infinite T , that are close to bandlimited in (−W,W ). They are
connected with the sinc function S(t) as the eigenfunctions of
the integral operator

ϕn(t) =
1
λn

∫ T

−T
ϕn(x)S(t− x)dx

=
∫ ∞

−∞
ϕn(x)S(t− x)dx

showing double orthogonality in finite and infinite intervals.
The concentration of energy in (−W,W ) of the eigenfunc-
tions {ϕn(x)} is given by the eigenvalues {λn}, which are
ordered as 1> λ0 > · · · > λN−1 > 0. For λ0 the energy con-
centration is maximum.

2.1 Orthogonal Projection
In the WS theory, sampling a non-bandlimited signal x(t)
requires pre-filtering by a low-pass filter of impulse response
h(t). The combination of the pre-filtering and the sampling
operations can be expressed as an inner product [8]:

(h∗ x)(t)|t=kTs =
∫
x(τ)h(kTs− τ)dτ

= < x, φ̃k >

so that the reconstructed signal is

x̂(t) |t=kTs=∑
k

< x, φ̃k > φ̃k(kTs) (5)

The WS sampling system, including and anti-aliasing pre-
filter, can thus be interpreted as an orthogonal projection [8].
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This operator computes the bandlimited approximation of
a not necessarily band-limited signal x(t). Using this ap-
proach, it will be satisfactory to obtain a reconstructed signal
which is as close as possible to the original signal instead of
being the exact original signal.

If the anti-aliasing filter is an ideal low-pass filter, then
h(t) = S(t) and Eq. (5) is an orthogonal expansion using the
time-shifted sinc functions. Instead of using the sinc func-
tions, we obtain the projection in terms of the Slepian basis,
due to the reasons mentioned above. Indeed, there is an ex-
pression for the sinc function in terms of the Slepian func-
tions [10]:

S(t) =
∞

∑
m=0

amϕm(t) (6)

The orthogonality of the Slepian functions gives the follow-
ing representation for the shifted sinc

S(t− k) =
∞

∑
m=0

ϕm(k)ϕm(t) (7)

where the expansion coefficients are am = ϕn(0). The recon-
struction formula in Eq. (1) takes the following form

x(t) =
∞

∑
k=−∞

x(kTs)

[
∞

∑
m=0

ϕm(kTs)ϕm(t)

]
(8)

Assume the sampled signal is x(t) |t=nTs , where Ts is the
Nyquist sampling period. If x(t) is time-limited with a sup-
port (0,T ), then T = (Nn− 1)Ts, where Nn is the minimum
number of samples needed for reconstruction in the WS the-
ory. Then

x(nTs) =
∞

∑
m=0

∞

∑
k=−∞

x(kTs)ϕm(kTs)ϕm(nTs)

≈
M−1

∑
m=0

[
Nn−1

∑
k=0

ϕm(kTs)x(kTs)

]

︸ ︷︷ ︸
γm

ϕm(nTs)

where truncation of the sum with respect to k is due to the
finite length of x(nTs), and the truncation to M for the other
sum is by letting the maximum discrete frequency (assuming
fmax is the maximum frequency of x(t))

2π fmaxTs = π ≤ 2π
Nn

(M−1) (9)

or M ≥ Nn/2+1.
Thus, we need only half of the samples required by the

WS sampling theory to reconstruct the signal. If we let M
be a value slightly larger than Nn/2+ 1 the reconstruction
error is greatly reduced, this is due to the behavior of the
eigenvalues that sharply change to zero as we increase the
value of M (See Fig. 2). Likewise, there will be cases when
it is possible to reduce the value of M given the sparsity of
the signal [5] with respect to the Slepian basis.

2.2 Reconstruction from Uniform/Nonuniform Sam-
pling
Although the sampling in the WS theory is uniform, i.e.,
the samples are taken at time nTs, 0 ≤ n ≤ Nn− 1, in prac-
tice the implementation of uniform sampling is not realistic.
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Figure 2: Eigenvalues λk for an M = Nn/2+1 = 10 projec-
tion.

Thus, we consider that the samples are taken at random times
around the nTs values without changing the number of total
samplesNn. The samples are taken at time ti = icTs+Δwhere
c = Nn/M and Δ is a random variable uniformly distributed
in [−0.5cTs,0.5cTs], except at the two extremes of the time
support, i.e., t0 = 0 and tN−1 = (Nn − 1)Ts. Thus the uni-
form sampling is a special case of the non-uniform sampling
having Δ= 0 with probability of one.

The projection of x(t) onto the space spanned by {ϕm(t)}
for m=0, ...,M−1

xM(t) =
M−1

∑
m=0

γmϕm(t)

makes xM(t) optimally concentrated on [−Ωmax,Ωmax] at
level M. The M sampling points of

xM = [xM(t0),xM(t1), ...,xM(tM−1)]T

can be chosen such that the locations of tm are uniform or
arbitrary. Letting the coefficient vector be

γM = [γ0,γ1, ...,γM−1]T

we can write the projection computed at times

ti = [t0, t1, · · · , tM−1]

as
xM = Ψ(ti)γM

where Ψ(ti) is an M×M matrix

Ψ(ti) =





ϕ0(t0) ϕ1(t0) · · · ϕM−1(t0)
ϕ0(t1) ϕ1(t1) · · · ϕM−1(t1)
...

...
...

...
ϕ0(tM−1) ϕ1(tM−1) · · · ϕM−1(tM−1)





Since there is no way to guarantee that this matrix is in-
vertible, especially in the non-uniform sampling, the coef-
ficients γM are obtained by using the pseudo-inverse matrix
Θ=Ψ( ΨΨT )−1, such that

γM = ΘxM (10)
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The signal is then recovered as

x(t)≈ xM(t) =
M−1

∑
m=0

γmϕm(t) (11)

Clearly, in the non-uniform sampling the matrixΨ(ti) is ran-
dom, and its pseudo-inverse is also random having many zero
elements. If we multiply it by a matrix Φ formed by the
Slepian basis, we will get a solution similar to the one ob-
tained by the compressive sensing method. Likewise, it is
possible to obtain a random filter from that matrix product
to get similar results to the ones we may obtain by the ran-
dom filtering method. We will explore these connections in
another paper.

2.3 Error Analysis
As indicated before, the reconstruction error ε in theWS pro-
cedure depends on whether or not the signal is band-limited
and on the aliasing caused by possible non-bandlimited con-
ditions. In the Slepian basis approach, the value ofM is cho-
sen such that the corresponding eigenvalue is zero or close
to zero, and the reconstruction error is zero or close to zero.
Using the following upper bound for the reconstruction error
with the Slepian basis [12],

ε = ε1+ ε2 ≤
ε1

1−λM−1
(12)

where λM−1 is the eigenvalue corresponding to the Slepian
function ϕM−1(t). If ε = 0 then by adjusting the value of M
such that λM−1 = 0 will imply ε2 = 0. So if we have a time-
limited signal and choose the value ofM so that the condition
in Eq.(12) is satisfied and the corresponding λM−1 = 0, the
signal will be exactly reconstructed and there will be no error
due to aliasing. Furthermore, if we chooseM so that λM−1 =
0, then independent of whether the signal being sampled is
band-limited or not, the process will not have any aliasing
errors, this is because if λM−1 = 0, then

ε1+ ε2 ≤ ε1
which can only be satisfied when ε2 = 0, since these are
quadratic errors.

3. SIMULATIONS
To illustrate the Slepian reconstruction we explore both uni-
form and non-uniform sampling of band-limited and non-
bandlimited signals. We will compare our results with the
ones obtained using the sinc interpolation for the WS method
using the Nyquist rate. Three test signals are used: (i) sum of
three sinusoids of frequencies with different amplitudes and
low frequencies (ii) the same sum of sinusoids embedded in
Gaussian noise, (iii) a linear frequency-modulated chirp with
a known maximum frequency. The first two of these signals
are band-limited with known maximum frequency, and the
third test signal is approximately band-limited (See Fig. 7).
From the maximum frequency we calculate the value of M
as indicated above and find the corresponding Slepian pro-
jection. The reconstruction error is computed for both our
method and WS.

Figure 3 shows the result of using non-uniform Slepian
sampling using half the Nyquist rate, and the correspond-
ing WS reconstruction using the Nyquist rate with the corre-
sponding reconstruction errors. When we let M = Nn/3 the
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Figure 3: (a) Top: original and reconstructed signals using
half Nyquist rate. Bottom: reconstruction error. (b) Top:
original and WS reconstructed signals with Nyquist rate.
Bottom: reconstruction error.

spectrum of the M-Slepian does not cover that of the original
(See Fig. 4) and the reconstruction error becomes a version
of the third sinusoid. Adding noise to the signal as well as
reducing M to about Nn/3 increases the reconstruction error
in our method compared to the WS but the reconstructed sig-
nal follows the original. Finally, applying our method to the
FM signal, after choosing the value of M from the spectrum
of the original and the projected signals (See Fig. 7) gives
similar results for the uniform or non-uniform cases, but not
for the WS as shown in Fig. 6. The effect on the reconstruc-
tion error by varying the value of M is shown in Fig. 8 for
the sinusoidal and the chirp test signals.
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Figure 4: Spectra of the original signal and its projection, and
of the M-Slepian function with M = Nn/3.

4. CONCLUSIONS
In this paper we showed the performance of the Slepian func-
tions in the sampling and reconstruction of reconstruction of
uniformly or non-uniformly sampled bandlimited and non-
bandlimited signals. Not only Slepian basis modification of
the WS system provides reduction in the number of samples
with smaller reconstruction errors but also it keeps the sim-
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Figure 5: (a) Top: noisy and reconstructed signals using 1/3
Nyquist rate. Bottom: reconstruction error. (b) Top: noisy
and WS reconstructed signals using Nyquist rate. Bottom:
reconstruction error.
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Figure 6: Linear FM chirp: Slepian reconstruction from
(a) uniform sampling, (b) non-uniform sampling with corre-
sponding errors. (c) WS reconstruction with corresponding
reconstruction error.

plicity of original WS theorem. This modification is open
for further development to obtain similar results to compres-
sive sampling. Slepian functions can also be exploited for
developing random filters which seem very promising due to
computational matters.
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