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ABSTRACT

A design procedure for first-order oversampling sigma delta modu-
lators (SDM) is proposed, which incorporates a particular frequency
warping. By warping the SDM noise transfer function with posi-
tive warping parameters, the out-of-band gain can be decreased and
hence stability properties can be improved. Moreover, an appropri-
ate choice of the corresponding warped SDM loop filters leads to
a signal transfer function that provides a boost in the signal band,
thereby yielding an increase in signal-to-noise ratio (SNR). This
paper describes the design procedure and SNR analysis for two dif-
ferent first-order frequency-warped SDM topologies, which require
only one additional multiplier compared to the traditional SDM
structure. The most promising one of these topologies is compared
with the traditional first-order SDM in computer simulations using
sinusoidal test signals, and yields an SNR improvement of 6 dB.

1. INTRODUCTION

A Sigma Delta Modulator (SDM) is a non-linear device widely used
in analog-to-digital (A/D) conversion to achieve a high resolution
without requiring high-precision analog components. Its typical
output stream has two fundamental characteristics, namely a few-
bit word representing the amplitude of the incoming signal and a
very high symbol rate. A high signal-to-noise ratio (SNR) can be
obtained by increasing the oversampling ratio (OSR) and by de-
creasing the noise power in the band of interest using specific filter
topologies [1],[2]. As seen in Fig. 1, the building blocks of the
system are a low-pass filter (integrator), an A/D convertor (com-
prising a sample-and-hold circuit and a quantizer), and a negative
feedback loop including a reconstructor for digital-to-analog (D/A)
conversion. The usual linear model for the quantizer (which actu-
ally makes the system non-linear) is an additive noise source and
a gain. The noise source represents the quantization noise, intro-
duced by the low-bit quantizer. First-order SDMs are particularly
interesting because of their well-understood stability properties and
low complexity [3],[4].

We can think of the whole SDM as a device in which the feed-
back signal represents the quantization noise, while the low-pass
filter in the feedforward path is designed to cancel it and to process
its frequency content, moving it to a part of the spectrum that is not
important for the specific application. For example, in audio A/D
conversion, the quantization noise is shifted to a frequency interval
that is higher than the audio band. A properly designed low-pass
filter is thus needed to achieve the desired performance in terms of
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Figure 1: Block diagram for a Sigma Delta Modulator.

SNR and signal-to-noise-and-distortion ratio (SINAD). With the in-
tent of increasing the performance of a SDM without affecting the
complexity of the low-pass filter, a design procedure for SDMs is
proposed, which incorporates a particular frequency warping [5].
The resulting SDM is expected to achieve a better SNR and SINAD
compared to a traditional topology of the same order, due to an in-
creased frequency selectivity of the warped modulator filter.

As already proposed in lossy audio coding techniques [6], a
non-uniform representation of the frequency axis can be an instru-
mental for increasing the frequency resolution in the low part of
the spectrum, emulating the human cochlear behaviour that approx-
imately has a constant-Q analysis capability [7]. By embedding this
feature directly into the SDM, we can expect a better performance
because of the more selective noise shaping. In audio applications,
it is usually preferred to combine a high symbol rate (e.g., high over-
sampling ratio (OSR)) with relatively simple low-pass filters, made
up of only one or two integrator stages. We propose a procedure
for designing first-order frequency-warped SDM architectures that
have two distinct advantages over the traditional first-order SDM: a
lower noise transfer function (NTF) Nyquist gain (also called “out-
of-band gain”), which is important for stability issues [3], and a sig-
nal transfer function (STF) that is shaped to be more frequency se-
lective, hence improving the SNR performance. These advantages
can be achieved without changing the complexity of the filter in a
drastic manner. Frequency warping of higher-order SDMs, which
are of importance in A/D conversion problems where the applicable
OSR is limited due to the large signal bandwidth, e.g. in telecom-
munications, is considered in [8].

This paper is organized as follows. In Section 2 we present the
design procedure for obtaining first-order frequency-warped SDMs.
Depending on how the frequency warping is chosen to affect the
STF, two different first-order topologies are derived, which require
only one additional multiplier compared to the traditional first-order
SDM structure. In Section 3, we perform a SNR analysis for
these first-order frequency-warped SDM topologies and for differ-
ent types of input signals. Finally, in Section 4, we present some
simulation results of first-order frequency-warped SDMs and com-
pare them to traditional SDMs in terms of SNR. Section 5 concludes
the paper.
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2. FIRST-ORDER FREQUENCY-WARPED SDM DESIGN

2.1 Notation

The notation used throughout this paper is adopted from [3]. We can
represent a SDM as a two-input, single-output device as depicted in
Fig. 2. The A/D quantizer is denoted by Q and modeled as an
additive noise source and a gain, while the A/D sample-and-hold
circuit and the D/A reconstructor are assumed to be complementary
and are hence not included in the model. In the following, G(z)
denotes the STF and H(z) the NTF. U(z) is the input signal and
V (z) is the encoded output. If we define the error signal as E(z) =
V (z)−Y (z), we can present the classical input-output relation for
the modulator, that is

V (z) = G(z)U(z)+H(z)E(z) (1)

and the so-called loop filters are defined as

L0(z) =
Y (z)

U(z)
=
G(z)

H(z)
(2)

and

L1(z) =
Y (z)

V (z)
=
H(z)−1

H(z)
. (3)

It is important to remember that in this simplified linear model the
noise is signal-dependent.

Q

L0(z) = G(z)
H(z)

E(z)

V (z)Y (z)

L1(z) = H(z)−1
H(z)

U (z)

Figure 2: General block diagram of a single-quantizer SDM.

2.2 Design Procedure: Derivation

The simplest first-order noise shaping function is a pure differentia-
tor, having a transfer function

H(z) = 1− z−1. (4)

The NTF can be warped by replacing the complex variable z with

the bilinear all-pass function z−λ

1−λ z
(or, equivalently, by replacing

z−1 with z
−1−λ

1−λ z−1
) [5], leading to

H(z,λ ) = 1−
z−1−λ

1−λ z−1
=

(1+λ )(1− z−1)

1−λ z−1
. (5)

As pointed out in [3], the NTF should always be scaled such that
the first tap of its impulse response is 1. This is necessary to assure
that the L1 loop filter contains at least one pure time delay, hence
avoiding an algebraic loop in the closed-loop SDM scheme. The
first tap of the impulse response ofH(z,λ ) equals (1+λ ), hence the
desired warped and scaled NTF is obtained by dividing the transfer
function in (5) by (1+λ ),

H̃(z,λ ) =
1− z−1

1−λ z−1
. (6)

The magnitude response of H̃(z,λ ) is shown in Figs. 3(a) and 3(b)
for positive and negative warping parameters, respectively.
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Figure 3: First-order frequency-warped SDM: (a) NTF magnitude
response (λ ≥ 0), (b) NTF magnitude response (λ ≤ 0), (c) STF
magnitude response, (topology I, λ ≥ 0), (d) STF magnitude re-
sponse (topology I, λ ≤ 0).

The corresponding warped loop filter L̃1(z,λ ) can then be cal-
culated as follows:

L̃1(z,λ ) =
H̃(z,λ )−1

H̃(z,λ )
= −(1−λ )

z−1

1− z−1
. (7)

At this point the warped SDM design allows for some freedom in
deciding how the frequency warping will affect the STF G(z). The
effect on G(z) follows directly from the choice of the loop filter
L̃0(z,λ ). A first possibility is to constrain the warped loop filters
L̃0(z,λ ) and L̃1(z,λ ) to obey the same relationship as in the non-
warped case, i.e.,

L0(z) = −L1(z) ⇒ L̃0(z,λ ) = −L̃1(z,λ ). (8)

This choice leads to

L̃0,I(z,λ ) = (1−λ )
z−1

1− z−1
(9)

which corresponds to the first-order SDM topology shown in Fig. 4,
denoted as topology I. It can be seen that the warping merely comes
down to adding a gain factor (1−λ ) in the SDM forward path. The
warped STF G̃I(z,λ ) is in this case given by

G̃I(z,λ ) = (1−λ )
z−1

1−λ z−1
(10)

which is a high-pass filter if λ < 0, a low-pass filter if λ > 0, and
a pure time delay if λ = 0. The STF magnitude response is plot-
ted in Figs. 3(c) and 3(d) for positive and negative warping pa-
rameters, respectively. In audio applications, the positive range of
the warping parameter is more interesting, because of the intention
of emulating the cochlear frequency resolution behaviour. Further-
more, a positive value of λ yields a low-pass STF, even in the first-

order case (while in the non-warped case G(z) = z−1 has a flat STF
frequency response). Finally, for positive warping parameters, the
NTF frequency response has smaller out-of-band gain (see Figs.
3(a)), which is beneficial for SDM stability [3].
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Figure 4: First-order frequency-warped SDM topology I
(L̃0(z,λ ) = −L̃1(z,λ )).
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Figure 5: First-order frequency-warped SDM topology II
(L̃0(z,λ ) = L0(z)).

A second possibility for completing the design of the first-order
warped SDM is to constrain L̃0(z,λ ) to be equal to the loop filter
L0(z) in the non-warped first-order SDM, i.e.,

L̃0,II(z,λ ) =
z−1

1− z−1
(11)

which leads to

G̃II(z,λ ) =
z−1

1−λ z−1
. (12)

The resulting topology, denoted as topology II, is shown in Fig. 5,
and only differs from topology I in the position of the gain factor
(1− λ ), which is now in the feedback path. Obviously, the NTF
H̃(z,λ ) is the same for both topologies, whereas the STF G̃II(z,λ )
is a scaled version of the STF G̃I(z,λ ) in (10), the scaling being such
that the gain at dc increases for increasing λ , whereas for topology
I it is equal to 0 dB for all values of λ . This can be seen from the
topology II STF magnitude response, plotted in Figs. 6(a) and 6(b)
for positive and negative values of λ , respectively.
We should mention that, while the warped and scaled first-order

NTF in (6) can be considered as a special case of the NTF of the so-
called enhanced first-order SDM [4], the STFs proposed in (10) and
(12) are not special cases of the STF in [4], due to the absence of a
delay in the SDM feedback path. As a consequence, the results on
SNR and the stability analysis presented in [4], cannot be applied to
the proposed first-order frequency-warped SDM topologies.
The implementation of the proposed first-order frequency

warped SDM topologies only requires an additional multiplier com-
pared to the traditional implementation, either in the forward path or
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Figure 6: First-order frequency-warped SDM: (a) STF magnitude
response (topology II, λ ≥ 0), (b) STF magnitude response (topol-
ogy II, λ ≤ 0).

in the feedback path, hence the increase in computational complex-
ity or hardware cost is limited. The equivalent C-code for imple-
menting both the traditional and the frequency-warped modulator
filters can be found in [8]. We should note that, in this simple first-
order design example, the frequency warping effect is not fully ex-
ploited. The zero of the non-warped NTF in (4) is at dc, a frequency
that is always mapped onto itself under the frequency transform as-
sociated with the bilinear frequency warping. As a consequence,
the frequency warping can in this case only affect the radius of the
NTF zero, and not its angle. Apart from a radial displacement of
the zero, the frequency warping also adds a (real) pole at z = λ to
the NTF (and also to the STF in both topologies considered above).

3. SNR ANALYSIS

The SNR of the first-order frequency-warped SDM topologies de-
scribed above can be predicted using the analytical SDMmodel pre-
sented in Section 2.1. The SNR is defined as the ratio of the power
of the input signal component in the output signal and the power of
the quantization noise component in the output signal,

SNR= 10log10
σ2xv

σ2ev
(13)

which are calculated in the signal band [0, fB], with fB the input
signal bandwidth, see e.g. [4],

σ
2
xv =

∫ fB
0

|G̃( f ,λ )|2|X( f )|2d f (14)

σ
2
ev =

∫ fB
0

|H̃( f ,λ )|2|E( f )|2d f . (15)

Using the fact that 2 fB = fS/OSR, with fS the sampling frequency
and OSR the oversampling ratio, the integrals in (14) and (15) can
be written in terms of the normalized radial frequency variable ω =
2π f/ fS,

σ
2
xv =

fS

2π

∫
π/OSR

0
|G̃(ω,λ )|2|X(ω)|2dω (16)

σ
2
ev =

fS

2π

∫
π/OSR

0
|H̃(ω,λ )|2|E(ω)|2dω. (17)

First of all, we evaluate σ2ev, assuming that the quantization
noise E(z) has a flat power spectrum in the signal band [0, fB] (cfr.
[4]), i.e., |E(ω)|2 = σ2e , ∀ω ∈ [0,π/OSR]. Under this assumption,
(17) can be rewritten as

σ
2
ev =

fSσ
2
e

2π

∫
π/OSR

0
|H̃(ω,λ )|2dω. (18)

The magnitude response of the first-order warped and scaled NTF
in (6) can be calculated as follows,

|H̃(ω,λ )|2 =

∣∣∣∣ 1− e
− jω

1−λe− jω

∣∣∣∣
2

(19)

= 2
1− cosω

1−2λ cosω +λ 2
(20)

hence

σ
2
ev =

fSσ
2
e

π

∫
π/OSR

0

1− cosω

1−2λ cosω +λ 2
dω. (21)

If λ 6= 0, using the substitution t = tan ω
2 (implying that cosω =

1−t2

1+t2
and dω = 2dt

1+t2
), and subsequently applying a partial fraction
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expansion, the integral in (21) can be rewritten as follows,

∫
1− cosω

1−2λ cosω +λ 2
dω =

∫
4t2

(1+ t2)[(1−λ )2+(1+λ )2t2]
dt

=
1

λ

[∫
dt

1+ t2
−

(1−λ )2

(1+λ )2

∫
dt

(1−λ )2

(1+λ )2
+ t2

]
(22)

=
1

λ

[
arctan t−

1−λ

1+λ
arctan

(1+λ

1−λ
t
)]

(23)

=
1

λ

[
ω

2
−
1−λ

1+λ
arctan

(1+λ

1−λ
tan

ω

2

)]
. (24)

If λ = 0, the integral in (21) reduces to

∫
(1− cosω)dω = ω − sinω. (25)

Substituting (24) and (25) in (21) yields

σ
2
ev =

fSσ
2
e

πλ

[
π

2OSR
−
1−λ

1+λ
arctan

(1+λ

1−λ
tan

π

2OSR

)]
(26)

for λ 6= 0 and

σ
2
ev =

fSσ
2
e

π

(
π

OSR
− sin

π

OSR

)
(27)

for λ = 0. Using de l’Hôpital’s rule, it can be shown that

lim
λ→0

fSσ
2
e

πλ

[
π

2OSR
−
1−λ

1+λ
arctan

(1+λ

1−λ
tan

π

2OSR

)]
(28)

=
fSσ
2
e

π

(
π

OSR
− sin

π

OSR

)
(29)

such that the set of equations in (27)-(26) defines a continuous func-
tion of λ ∈ (−1,1).
Subsequently, we evaluate σ2xv for both warped SDM topolo-

gies I and II. An important difference with the SNR analysis for
the traditional first-order SDM, which has a flat STF frequency re-
sponse, is that we have to assume knowledge of the input signal
power spectrum |X(ω)|2 for evaluating (16) when λ 6= 0. We will
consider two extreme cases, the input signal being either a white
noise (WN) signal or a pure sinusoidal tone (SIN). The behavior of
the predicted SNR as a function of λ will show to be very simi-
lar in both cases, hence we can expect a similar SNR behavior for
more realistic non-white, broadband signals. Before evaluating the
power of the input signal component in the SDM output signalV (z)
according to (16), we calculate the STF magnitude response for the
warped SDM topology I defined by (10),

|G̃I(ω,λ )|2 =

∣∣∣∣ (1−λ )e− jω

1−λe− jω

∣∣∣∣
2

(30)

=
(1−λ )2

1−2λ cosω +λ 2
(31)

and likewise for topology II, defined by (12),

|G̃II(ω,λ )|2 =
1

1−2λ cosω +λ 2
. (32)

If we assume that the input signal is a WN signal with variance
σ2x , then (16) can be rewritten as

σ
2
xv,I =

fSσ
2
x

2π
(1−λ )2

∫
π/OSR

0

dω

1−2λ cosω +λ 2
(33)

σ
2
xv,II =

fSσ
2
x

2π

∫
π/OSR

0

dω

1−2λ cosω +λ 2
(34)

for topologies I and II, respectively. Performing the substitution
t = tan ω

2 allows us to solve the integral in (33)-(34) as follows:

∫
dω

1−2λ cosω +λ 2
=

2

(1+λ )2

∫
dt

(1−λ )2

(1+λ )2
+ t2

(35)

=
2

(1+λ )2
1+λ

1−λ
arctan

(1+λ

1−λ
t
)

(36)

=
2

(1+λ )(1−λ )
arctan

(1+λ

1−λ
tan

ω

2

)

which leads to

σ
2
xv,I =

fSσ
2
x

π

1−λ

1+λ
arctan

(1+λ

1−λ
tan

π

2OSR

)

σ
2
xv,II =

fSσ
2
x

π

1

1−λ 2
arctan

(1+λ

1−λ
tan

π

2OSR

)
.

(37)

On the other hand, if we assume the input signal to be a pure si-

nusoidal tone with power σ2x and radial frequency ω0 ∈ [0,π/OSR],

|X(ω)|2 =
σ2x

2

[
δ (ω +ω0)+δ (ω −ω0)

]
(38)

then (16) can be calculated as follows, using the fact that
|G̃(ω0,λ )|2 = |G̃(−ω0,λ )|2:

σ
2
xv =

fSσ
2
x

2π

∫
π/OSR

0
|G̃(ω0,λ )|2dω (39)

=
fSσ
2
x

2π
|G̃(ω0,λ )|2

π

OSR
(40)

= σ
2
x fB|G̃(ω0,λ )|2 (41)

which leads to

σ
2
xv,I =

σ2x fB(1−λ )2

1−2λ cosω0+λ 2

σ
2
xv,II =

σ2x fB

1−2λ cosω0+λ 2
.

(42)

As a result, for λ 6= 0, the predicted SNR using the analytical
model for the first-order frequency-warped SDM can be obtained
using (26), (37), and (42), for topologies I and II, and in case of
WN and SIN input signals, respectively:

SNRI(WN) = 10log10
σ2x

σ2e
λ
1−λ

1+λ
Γ(λ )

SNRII(WN) = 10log10
σ2x

σ2e

λ

1−λ 2
Γ(λ )

(43)

SNRI(SIN) = 10log10
σ2x

σ2e
λ

(1−λ )2

1−2λ cosω0+λ 2
Φ(λ )

SNRII(SIN) = 10log10
σ2x

σ2e

λ

1−2λ cosω0+λ 2
Φ(λ )

(44)

with

Γ(λ ) =
arctan

(
1+λ

1−λ
tan π
2OSR

)
π
2OSR −

1−λ

1+λ
arctan

(
1+λ

1−λ
tan π
2OSR

) (45)

Φ(λ ) =
1

1− 2OSR
π
1−λ

1+λ
arctan

(
1+λ

1−λ
tan π
2OSR

) . (46)
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Figure 7: Predicted SNR vs. warping parameter for first-order
frequency-warped SDM topologies I and II (WN = White noise in-
put, SIN = sinusoidal input).

The SNR expressions for λ = 0 can equivalently be obtained using
(27), (37), and (42).

The predicted SNR is plotted versus the warping parameter

λ ∈ (−1,1) in Fig. 7 for σ2x /σ2e = 1, OSR= 64, fB = 24 kHz, and
f0 = 1 kHz (such that ω0 = ( f0/ fB)(π/OSR) = 2.0453e− 3 rad).
For both signal types, we observe that the SNR of topology I de-
creases dramatically as λ → 1, while it rises somewhat as λ →−1.
On the other hand, the SNR of topology II is predicted to increase
strongly for λ → 1, while it remains more or less constant for other
values of λ . This behavior could be expected by examining the
NTF and STF magnitude responses in Figs. 3 and 6. The warped
NTF magnitude response rises significantly in the signal band at
high OSRs when λ → 1 (e.g., for λ = 0.8, the NTF magnitude re-
sponse is 10 dB higher compared to the non-warped NTF response

ifω < 3 ·10−1 rad, corresponding to the entire signal band for OSRs
larger than 10, see Fig. 3(a)). On the other hand, the STF magni-
tude response remains constant or even decreases (for positive λ )
within the signal band for the warped SDM topology I, see Fig.
3(c), which obviously leads to a loss of SNR. In contrast, the STF
magnitude response of topology II shows a boost in the signal band,
which increases as λ → 1, and which (over)compensates for the
increase in the NTF response, see Fig. 6(a). From this analysis,
we expect the positive range of the warping parameter to be most
promising in terms of SNR improvement. This observation will be
confirmed by simulation results in Section 4.

4. SIMULATION RESULTS

The positive range [0,1) of the warping parameter λ is of partic-
ular interest for first-order frequency-warped SDMs, since it ren-
ders the frequency warping perceptually relevant in audio applica-
tions [6],[7], and since it yields frequency-warped SDMs of which
the NTF frequency response has smaller out-of-band gain (see Fig.
3(a)), which is beneficial for SDM stability [3]. In Section 3, it was
shown that the SNR is expected to increase for positive λ only when
topology II is used.

After implementing the first-order frequency-warped SDM

topology II in C-code, extensive simulations of more than 3 · 106

samples were run with sinusoidal input signals of variable ampli-
tude, and with f0 = 1kHz. The signal bandwidth was fB = 24kHz
and the OSR = 64, resulting in a sampling frequency fS = 3072
kHz. The plot representing the SNR for both the traditional SDM
and the frequency-warped one is shown in Fig. 8. For several posi-
tive values of the warping parameter λ we have found better results
in the SNR performance indicator as compared to the traditional
SDM, with an optimum average 6 dB gain for λ = 0.45.
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Figure 8: SNR comparison between a first-order traditional SDM
and frequency-warped SDM (topology II) for λ = 0.45.

5. CONCLUSION

In this paper, we have incorporated frequency warping into the de-
sign of first-order SDMs, to obtain two first-order frequency-warped
SDM topologies. It was observed that the NTF out-of-band gain de-
creases as the warping parameter goes to unity, which is beneficial
to SDM stability. An SNR analysis was performed for sinusoidal
and WN input signals, and it was conluded that, for positive warp-
ing parameters, the proposed topology II is most promising in terms
of SNR improvement. The predicted SNR improvement was con-
firmed by simulation results with sinusoidal test signals.
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