
DESIGN OF HIGHER DENSITY DUAL-TREE DISCRETE WAVELET TRANSFORM

WITH FEW DEGREES OF FREEDOM

Bogdan Dumitrescu, Hamid R. Dadkhahi

Department of Signal Processing
Tampere University of Technology

PO BOX 553, 33101 Tampere, Finland
e-mail: bogdan.dumitrescu@tut.fi, hamid.dadkhahi@tut.fi

ABSTRACT

We propose a method for the design of FIR filters that define
higher density discrete wavelet transforms forming a dual
tree. The design is based on a parameterization, using pos-
itive trigonometric polynomials, of the convex space of pa-
rameters characterizing the filters. Using only one or two
degrees of freedom, we are able to design, via a search pro-
cedure, complex wavelets that are nearly analytic and have
high regularity.

1. INTRODUCTION

The higher density discrete wavelet transform (HD-DWT),
introduced in [6], is an overcomplete transform using the
three-channel filter bank shown in Fig. 1. The signal in the
first channel is processed recursively with an identical filter
bank, giving a redundancy factor of three for the complete
tree. Like other expansive transforms, the HD-DWT can per-
form better than the critically sampled DWT in diverse ap-
plications.

The dual-tree complex wavelet transform [7] employs
two real DWTs that operate in parallel on the input signal,
emulating a complex transform. This construction is possi-
ble also with HD-DWTs [2, 9]. In this paper, our aim is to
obtain optimized dual-tree HD-DWTs, built with FIR filters.
We consider only self-Hilbertian trees, for which the filters
used in the second filter bank (identical in structure with the
first, shown in Fig. 1) are

G0(z) = z−NH0(z
−1),

G1(z) = z−NH1(z
−1),

G2(z) = z−NH2(z
−1),

(1)

i.e. their impulse responses are the reversed of those from the
first filter bank. Thus, the filters will be almost linear phase
and the resulting complex wavelets will be almost symmet-
ric.

Let ψh,i(t), ψg,i(t), i = 1,2, be the wavelets generated by
the filters H0(z), Hi(z) and G0(z), Gi(z), respectively. The
two HD-DWTs form a dual-tree if ψg,i(t) is approximately
equal to the Hilbert transform of ψh,i(t). Equivalently, the
complex wavelet ψi(t) = ψh,i(t)+ jψg,i(t) is approximately
analytic and so its spectrum Ψi(Ω) is approximately zero for
negative frequencies. For quantifying the analyticity prop-
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Figure 1: Filter bank used for the implementation of the HD-
DWT.

erty, we use an ∞-norm measure

E1,i =
maxΩ<0 |Ψi(Ω)|

maxΩ>0 |Ψi(Ω)|
(2)

or a least-squares measure

E2,i =

∫ 0
−∞ |Ψi(Ω)|2dΩ
∫ ∞

0 |Ψi(Ω)|2dΩ
. (3)

We optimize (2) and (3) for HD-DWTs that have few de-
grees of freedom (left by the perfect reconstruction and regu-
larity constraints), using a characterization of the convex set
of free parameters. A similar but simpler procedure has been
used for critically sampled DWTs [3]. We are aware of only
two other methods for designing dual-tree HD-DWTs. In [2],
the case of two degrees of freedom is treated using a convex
combination of minimal length product filters; by its nature,
the search is only partial (a line in a 2D space). In [9], the
filters of the second tree are not defined by (1) and the design
involves no explicit optimization.

The content of this paper is as follows. In section 2, we
review the relationship among the filters that generate a HD-
DWT. In section 3, we present our design algorithm, that ex-
ploits the convexity of the admissible set of parameters that
define the filters. Section 4 gives the experimental results
(better than those from [2]) and examples of optimal filters.

2. PROPERTIES OF HD-DWT FILTERS

We consider filters H0(z), H1(z), H2(z) that are FIR of degree
N and have the following properties. The filter H0(z) has K0

zeros at z = −1, i.e.

H0(z) =

(

1 + z−1

2

)K0

A(z), (4)
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the degree of A(z) being M = N −K0. The polynomial

R(z) = A(z)A(z−1) =
M

∑
k=−M

rkz−k (5)

is symmetric and nonnegative on the unit circle.
The filters H1(z) and H2(z) have K2 zeros at z = 1.
To satisfy perfect reconstruction (PR) constraints, the fil-

ter H1(z) is taken as

H1(z) = z−α

(

1 + z−1

2

)K1
(

1− z−1

2

)K2

A(−z−1)(−z)M,

(6)
where α is an integer such that α + K2 + M is odd and K1 =
K0 −K2 > 0.

The only remaining PR constraint is

H0(z)H0(z
−1)+ H1(z)H1(z

−1)+ H2(z)H2(z
−1) = 2. (7)

Hence, using (4) and (6), it results that the nonnegative poly-
nomial

S(z) = H2(z)H2(z
−1) (8)

must satisfy the condition

2S(z) = 2−

(

z+ 2 + z−1

4

)K0

R(z) (9)

−

(

z+ 2 + z−1

4

)K1
(

−z+ 2− z−1

4

)K2

R(−z).

The highest degree coefficient of S(z) is

−
1

4K0

[

1 +(−1)M+K2
]

rM. (10)

It results that the degree of S(z) is N if M + K2 is even and
N −1 if M + K2 is odd.

Since S(z) has K2 zeros at z = 1, we can write

S(z) =

(

−z+ 2− z−1

4

)K2

P(z), (11)

where P(z) is a symmetric polynomial positive on the unit
circle of degree

Np =
{

N −K2, if M + K2 is even,
N −K2 −1, otherwise.

(12)

The above material is mostly drawn from [6]. What fol-
lows is a new view of PR relations. It is clear that the PR
condition (9) is linear in the coefficients of R(z) and P(z).
Denoting

r = [r0 r1 . . . rM]T , p = [p0 p1 . . . pNp ]
T (13)

the vectors of distinct coefficients of R(z) and P(z), the PR
condition (9) can be written in the compact form

C1r+C2p = e ⇔ [C1 C2]

[

r
p

]

= e ⇔ Cx = e, (14)

where the matrices C1, C2 can be built easily from the con-
volution matrices that appear in the polynomial multiplica-
tions from (9) and e = [2 0 . . . 0]T , x = [rT pT ]T . The sys-
tem (14) has Np + K2 + 1 equations (the number of distinct
coefficients of S(z)) and Np + M + 2 unknowns (the number
of distinct coefficients of R(z) and P(z)). Let us denote

L = M−K2 + 1 = N −K0 −K2 + 1 (15)

the number of degrees of freedom in the system (14), i.e. the
difference between the number of variables and the number
of equations in (14).

As argued in [6], we always take K1 = 1 (otherwise the
filter H1(z) has a very small norm and so its channel will con-
tain only an insignificant amount of the energy of the input
signal) and so we have K2 = K0 −1. The values of K0 and L
determine the degrees of all filters that appear in this section.

As a side note, since M + K2 and M −K2 have the same
parity, it follows from (15) that M + K2 and L have opposite
parities, and so (12) can be written

Np =
{

N −K0 + 1, if L odd,
N −K0, if L even.

(16)

The filters designed in [6] have minimum length, i.e.
N = K0 + K2 − 1, L = 0. In this case, the system (14) has
a single solution and, moreover, the resulting polynomials
R(z) and P(z) are nonnegative. (Note that in [6], this solu-
tion is presented in a different way.) If L > 0, then there are
many (an infinite number of) solutions to the system (14) and
only some of them correspond to nonnegative polynomials.
We will see in the next section how to select appropriate so-
lutions.

3. DESIGN IDEA AND ALGORITHM

An essential premise for the optimization of dual-tree HD-
DWT is the ability to characterize the set of nonnegative
solutions R(z), P(z) to the system (14), for given K0 and
L. A first remark is that this set is convex. This follows
from the fact that the set of polynomials that are nonneg-
ative on the unit circle is convex and from the linearity of
the constraint (14). Moreover, the set is bounded; this is
a consequence of the PR constraint (7), which implies that
|H0(e

jω)|2 + |H2(e
jω)|2 ≤ 2, ∀ω , which in turn puts bounds

on R(e jω) and P(e jω).
We split the system Cx = e (14) such as to isolate the

free variables, for example by taking them as the first L ele-
ments of x

[A C̃]

[

r̃
x̃

]

= e, (17)

where r̃ ∈ R
L contains the free variables and x̃ ∈ R

Np+K0

contains the dependent variables; the square matrix C̃ is non-
singular. Given the first L elements of x (they actually belong
to r), the dependent variables can be computed by

x̃ = C̃−1(e−Ar̃). (18)

Now, the problem to be solved is what values can take
the elements of r̃. Although they belong to a convex set,
the optimization criteria (2) and (3) are not convex functions
and so we cannot formulate a convex optimization problem.
However, we can devise a search procedure, based on the
following remark.
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Let us assume that, for a given nonnegative integer ℓ, the
values of the variables r0, r1, . . . , rℓ−1 are known. (We have
reduced the problem to a section through the set of all ad-
missible r̃.) Then, we can solve the following optimization
problem

rℓ,min(r0, . . . ,rℓ−1) = min
r̃

rℓ

s.t. C1r+C2p = e
r0, . . . ,rℓ−1 = given values
R(ω) ≥ 0, P(ω) ≥ 0, ∀ω

(19)
A similar maximization problem gives rℓ,max(r0, . . . ,rℓ−1)
and thus, for given r0, . . . ,rℓ−1, all admissible values of rℓ be-
long to the interval [rℓ,min,rℓ,max]. The key point here is that,
using the trace parameterization of nonnegative trigonomet-
ric polynomials [1, 4, 5], the problem (19) can be expressed
as an SDP problem and solved efficiently.

We propose the following general approach to the opti-
mization of dual-tree HD-DWT.

Step 0. Initial data: integers K0 and L.
Step 1. Find r0,min and r0,max by solving (19) for ℓ = 0.

Take some values r0 ∈ [r0,min,r0,max].
Step 2. For each r0 from the previous step, find r1,min(r0)

and r1,max(r0) by solving (19) for ℓ = 1; take values r1 ∈
[r1,min(r0),r1,max(r0)].

...
Step L. For each set of values r0, r1, . . . , rL−2 gen-

erated in the previous steps, find rL−1,min(r0, . . . ,rL−2) and
rL−1,max(r0, . . . ,rL−2) by solving (19) for ℓ = L−1; take val-
ues rL−1 ∈ [rL−1,min(r0, . . . ,rL−2),rL−1,max(r0, . . . ,rL−2)].

Step L+ 1. For each set of values r0, . . . , rL−1 generated
in the previous steps, compute x̃ from (18) and thus all the
coefficients of R(z), P(z) are available.

Compute all spectral factors A(z) of R(z) and compute
H0(z) and H1(z) from (4) and (6), respectively.

Compute all spectral factors B(z) of P(z) and put

H2(z) =

(

1 + z−1

2

)K2

B(z). (20)

For each combination of filters H0(z), H1(z), H2(z) com-
pute the wavelets ψh,i(t), ψg,i(t), i = 1,2, and the analyticity
measures (2) and (3).

Output: the combination of filters that gives the mini-
mum values of max(E1,1,E1,2) (for the ∞-norm measure) and
max(E2,1,E2,2) (for the least-squares measure).

In the actual implementation for L = 1 and L = 2, we have
used uniform grids covering the intervals [r0,min,r0,max] (typ-
ically few hundred points) and [r1,min(r0),r1,max(r0)] (typi-
cally one hundred points). A second run of the algorithm, on
a fine grid around the best values of r0 (for L = 1) or r0 and
r1 (for L = 2), was used to compute good approximations
of the optimal filters. To speed up the algorithm, we have
computed the spectral factors of P(z) (and thus H2(z)) only
if the values of the analyticity measures for the first complex
wavelet (generated by H0(z) and H1(z)) were good, i.e. less
than a predefined threshold.

A different approach (that we have not yet experimented)
would be to generate only one set r0, . . . , rL−1 at a time. This
approach is somewhat slower, since there are more problems

K0 r0 E1(%) r0 E2(%)
2 2.4769 38.8 2.4218 13.8
3 3.8450 17.7 3.9631 2.31
4 12.264 42.7 10.608 10.5
5 35.704 18.9 34.237 1.97
6 124.80 10.0 124.30 1.29
7 267.46 14.6 281.82 2.02
8 1469.5 9.57 1382.4 0.543

Table 1: Optimal values of the analyticity measures for L = 1
degree of freedom.

K0 r0 r1 E1(%) r0 r1 E2(%)
2 1.981 0.0795 16.5 1.928 0.0926 2.77
3 4.665 −1.204 12.4 4.385 −0.9896 1.18
4 7.249 −1.419 5.55 7.249 −1.414 0.275
5 31.29 −18.79 5.70 30.45 −18.13 0.418
6 62.04 −36.47 3.22 61.22 −35.75 0.097
7 122.4 −66.68 6.35 124.7 −68.33 0.448
8 1381 −1143 6.65 1377 −1139 0.377

Table 2: Optimal values of the analyticity measures for L = 2
degrees of freedom.

(19) to solve, but not significantly so, since the computa-
tion time for (19) is relatively small. This can open the way
to other optimization procedures rather than the brute force
search we have used. For example, randomized search or a
genetic algorithm search are possible ways to deal with the
case L ≥ 3, for which the complexity of the grid search can
become too high.

Finally, here are some considerations regarding the ac-
curacy of the algorithm. A cause of inaccuracy may be the
spectral factorization, especially if there are roots on the unit
circle. In our algorithm, the polynomials to be factorized are
R(z) and P(z), which typically have no roots on the unit cir-
cle. Another potential numerical trouble source may be the
positivity itself of the computed R(z) and P(z), whose lack
prevents the existence of a spectral factorization. It appears
that, for the filter degrees we have experimented (K0 ≤ 8),
the system (14) is sufficiently well-conditioned and the SDP
problem (19) can be accurately solved, hence the computed
polynomials are indeed nonnegative for practically all admis-
sible values of the parameters.

4. EXPERIMENTAL RESULTS

We have implemented the design algorithm from the previ-
ous section in Matlab and run it on a PC. The SDP prob-
lem (19) was solved using SeDuMi [8]. The accuracy of the
solver is set to 10−12. We have performed our search for one
and two degrees of freedom and values of K0 from 2 to 8.
Even for the most time consuming search (L = 2, K0 = 8), an
overnight calculation was sufficient (less than 8 hours, actu-
ally).

For one degree of freedom (L = 1), the degree of the fil-
ters is N = 2K0 − 1 and the only parameter in the design is
r0. (Note that α = 1 in (6), hence H1(z) is delayed with one
sample with respect to H0(z).) The optimal results are given
in Table 1. The optimal values of the E1 criterion are rela-
tively bad. However, for the E2 analyticity measure, some of
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Figure 2: Wavelets ψh,1(t), ψg,1(t) (up) and ψh,2(t), ψg,2(t)
(down), for the E2-optimal filters with L = 2, K0 = 4.
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Figure 3: Spectrum of the complex wavelets ψ1(t) (up) and
ψ2(t)(down), for the E2-optimal filters with L = 2, K0 = 4.

the values are satisfactory, especially for K0 = 8 and K0 = 6.

For two degrees of freedom (L = 2), the degree of the
filters is N = 2K0 and the parameters are r0 and r1. (The
degree of H2(z) is N−1, due to (16).) The optimal results are
displayed in Table 2. All the optimal values of E2 are better
than the corresponding values reported in [2] (where E1 is not
considered). For K0 ≥ 4, the values are less than 0.5%. The
coefficients of the E2-optimal filters for K0 = 4 are given in
Table 3. The corresponding wavelets are given in Fig. 2, and
the spectra of the complex wavelets in Fig. 3. In both figures,
the upper part corresponds to the wavelets generated by the
filters from the first and second channel of the filter bank
from Fig. 1, and the lower part to wavelets generated by the
filters from the first and third channel. One can remark the
good approximation of the analyticity property. For K0 = 6,
the same information as above is given in Table 4 and Figs. 4
and 5.

5. CONCLUSION

We have presented a method for designing dual-tree higher
density discrete wavelet transform. Allowing one or two free
parameters (the other variables being determined by perfect
reconstruction and regularity constraints), we have been able
to find HD-DWT filters that, together with their reversed ver-
sions, form complex wavelets that are approximately ana-
lytic. The method is efficient due to the parameterization of
the convex set of admissible coefficients.

Further work will be dedicated to the design of dual-tree
HD-DWT with three or more degrees of freedom, where im-
proved search methods may be necessary.
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H0 H1 H2

−0.053607650180478 0.018685262199982 0.007890466250877
−0.071333162453333 0.019599595188741 0.009813252147803

0.287927268940389 −0.076756822228470 −0.024763820696285
0.735917577096619 −0.180093747766496 −0.197831653510008
0.532687388432642 0.327842203334109 0.489824880660473
0.024751437332038 0.124612014670132 −0.347745087443976

−0.078585488205987 −0.323378293486099 0.027048473785034
0.017770929211224 0.035882137907623 0.035763488806082
0.018685262199982 0.053607650180478

Table 3: Coefficients of E2-optimal filters, L = 2, K0 = 4.

H0 H1 H2

0.011687955709184 −0.003568879741754 0.000866103658883
0.009216241237504 −0.002373104825526 0.000214011171626

−0.090423159123521 0.026768968989524 −0.009082914397474
−0.101058956717152 0.024185846627524 −0.007372170013552

0.313978563762228 −0.070352598117225 0.018933326455294
0.743179629297713 −0.171504481850303 0.169515860776227
0.518632784649025 0.313554322291325 −0.452548260888904
0.033573980507397 0.089007477642637 0.387079528423482

−0.067577903225681 −0.340193587892848 −0.068601260428724
0.026960541519068 0.074843932586531 −0.055389072843445
0.024377419157068 0.085479730180161 0.010433005600948

−0.004764654657982 −0.014159670180864 0.005951842485639
−0.003568879741754 −0.011687955709184

Table 4: Coefficients of E2-optimal filters, L = 2, K0 = 6.
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Figure 4: Wavelets ψh,1(t), ψg,1(t) (up) and ψh,2(t), ψg,2(t)
(down), for the E2-optimal filters with L = 2, K0 = 6.
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Figure 5: Spectrum of the complex wavelets ψ1(t) (up) and
ψ2(t)(down), for the E2-optimal filters with L = 2, K0 = 6.

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP


