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ABSTRACT
In this paper the linear sparse signal model is extended to allow
more general, non-linear relationships and more general measures
of approximation error. A greedy gradient based strategy is pre-
sented to estimate the sparse coefficients. This algorithm can be
understood as a generalisation of the recently introduced Gradient
Pursuit framework. Using the presented approach with the tradi-
tional linear model but with a different cost function is shown to
outperform OMP in terms of recovery of the original sparse coef-
ficients. A second set of experiments then shows that for the non-
linear model studied and for highly sparse signals, recovery is still

possible in at least a percentage of cases.

1. INTRODUCTION

A linear sparse signal model approximates an observation x from a
vector or Hilbert space using a small number of elements selected
from a set {¢;} of elements from the same space. With each of the
¢; is associated a coefficient y;. An estimate of x can then be written

as
xX=) ¢y = Py,
2

where ® can be thought of as a matrix with columns ¢; and where ¥
is the vector of coefficients y;. We further write the approximation
errorasXx —x =e.

In the rest of this paper we will restrict the discussion to fi-
nite dimensional vector spaces, as these are the ones encountered in
most applications. In particular, assume e,x,% € C¥ and § € CV.
If N > M, the estimation of y is underdetermined and additional
constraints have to be used. Sparse models address this issue by the
use of a sparsity measure. Furthermore, one also often allows for a
non-zero error e to account for observation noise or model misfit. A
general optimisation problem, using Ce and Cy, to denote the mea-
sures used to quantify the approximation error and the coefficient
sparsity, is then

y?P = min Ce(x — ®9) +ACy (). €))
Yy

1.1 Applications

Sparse signal models have a range of different applications in sig-
nal processing. These can be roughly grouped into two categories,
sparse approximation and sparse signal estimation, depending on
whether x or y is the actual signal of interest. In the first case, the
focus is on modelling a signal x, with the error of interest being
X — X, while in the second case, the focus is on estimating a vector
y with error defined in the coefficient domain, i.e. the error of in-
terest is y —y. Applications falling into the first category include,
for example, source coding [1], [2], denoising [3] and pattern anal-
ysis [4], while the second category includes, for example, source
separation [5] and compressed sensing [6, 7].
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IInstead of the regularised optimisation problem given here, an alterna-
tive would be to optimise either one of the above terms subject to a constraint
on the other one.

1.2 Algorithmic strategies

Whilst different measures of sparsity are available, one often counts
the number of non-zero elements in y. Even though this is not a
norm, it is typical to denote this ‘¢’ measure using the notation
llyllo- Also, in many applications, Ce is often the mean squared
error. Using these cost functions, the optimisation problem as set
out in (1) is known to be NP hard in general [8, 9] and sub—optimal2
strategies have to be used. Whilst there are many possible strategies
to be followed, a common method is to relax the ¢y penalty and to
use the ‘convex’ ¢; penalty instead [12]. Another approach is to
use a greedy strategy, such as Matching Pursuit (MP) or Orthogonal
Matching Pursuit (OMP) [13].

The algorithm in this paper can be understood as a generalisa-
tion of the OMP paradigm. We therefore review OMP here in a bit
more detail. Both, OMP and MP, are iterative algorithms, that, in
each iteration, select a single new element from {¢;} and then up-
date the coefficients ¥ appropriately. If rll = x — @yl is the
approximation error at the beginning of iteration n, then the selec-
tion criterion is

il"l = arg; max | rl*~1|.

To motivate the choice of the selection criterion in our algorithm
developed below, we note that & rl1 is the negative gradient of
[|[x — @ |3 evaluated at the current coefficient estimate y1 (See
for example [14]).

Both, MP and OMP use the same selection strategy, but differ
in the calculation of "/, OMP estimates " by minimising ||x —
<I>§r|\% under the restriction that only those values in § are allowed
to be non-zero that have been selected by the algorithm up to this
point. Let this set be denoted by Il and let TV = Tl=11 ) 1f
Py is the matrix @ with all columns removed apart from those

indexed by " and if Y is defined similarly, then

N
Yrm = ‘I>r[n]xv
where the dagger denotes the pseudo inverse.

2. NON-LINEAR SPARSE SIGNAL MODELS

In this section we generalise the linear sparse model of the previous
section to allow for more general non-linear functions and more
general measures of approximation error.

The applicability of a linear sparse signal model to a particu-
lar problem depends heavily on the ability to find a linear model
x ~ ®¥ in which x can be approximated with a sparse coefficient
vector. In this paper, we therefore extend the linear model to a gen-
eral non-linear model, allow for more general cost functions Ce and
suggest a greedy algorithm to calculate the sparse coefficients. Let
the approximation be defined as

X=1(9)

for some known non-linear function f. Again, assume we are in-
terested in finding a sparse vector ¥ that either approximates x or

2Note, however, that under certain conditions, linear programming meth-
ods and greedy algorithms are guaranteed to recover the optimum [10, 11].
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estimates y. As y is not available, we can only measure the error
as a function of the observation x and the estimate ¥ using a gen-
eral cost function Ce(x,§). Sparsity is measured by Cy so that the
problem becomes

¥ = min Co(x.9) +ACy (9). @
Yy

To find a (possibly non-optimal) solution to the above problem, we
derive a greedy algorithm that is inspired by OMP, but can be used
with more general® functions f and costs Ce.

To motivate the use of the above model, we introduce a real
world example in which the non-linear sparse model might be of
benefit. In a previous paper [15], we have presented preliminary
results on the applicability of compressed sensing ideas to remote
radar imaging. A synthetic aperture radar is mounted on a satellite.
Constraints on the computing power available on-board mean that
it is often too costly to fully process and code the data on-board the
satellite. Instead, following the compressed sensing paradigm, the
data, which is often available in the spatial Fourier domain, can be
reduced by discarding random subsets of the frequency bins. The
observed signal x is then a quantised (i.e. noisy) subset of the fre-
quency domain. If the full frequency information were available, a
complex valued image could be reconstructed using a two dimen-
sional Fourier transform. Whilst in this example, the phase of the
image is often not very structured, the magnitude (representing a
picture of the imaged area) is often sparse in a wavelet domain.
Splitting the complex image into the magnitude and phase part is a
non-linear transform. Therefore, the linear model is no-longer ap-
plicable and a non-linear model has to be used. Note that this signal
model is different from the complex valued linear model in which
the complex image is modelled using complex wavelet coefficients
with sparse magnitudes. In the radar imaging problem, the non-
linear operation (taking the magnitude) is performed in the image
domain (i.e. before taking the wavelet transform) and not in the
wavelet domain (that is after the wavelet transform).

3. THE GREEDY GRADIENT ALGORITHM

In this section, we describe a greedy gradient based algorithm to
calculate the coefficients in the sparse non-linear model introduced
in section 2.

As in OMP, we iteratively build up an estimate of § by select-
ing a single element in each iteration. This selection is based on

the current estimate yl"*U. The elements selected up to the current

iteration are collected into the set T" and 9["] is estimated by opti-
mising Ce under the constraint that only those elements with indices

in T are non-zero.

3.1 Greedy selection strategy

As mentioned above, the selection step in OMP can be understood
as follows. The gradient of the squared error is evaluated at the
current coefficient estimate and OMP selects that coefficient for
which the derivative (with respect to this coefficient) is largest in
magnitude. Using this point of view, a generalisation to more gen-
eral differentiable cost functions Ce and non-linear signal models is
straight forward. Let

w _ dCe(x,9)
! dyi |y

be the derivative of Ce with respect to the i coefficient §;, evaluated
at the current estimate 9["*1]. As in MP and OMP, selection is then

(7]

based on the magnitude of g;

il"l = arg; max |g£."] |

3 As the algorithm proposed here is based on the derivatives of Ce (x,¥)
with respect to the coefficients J;, these should be well defined and non-zero
at least for those points that are not locally optimal.

In other words, we choose the coefficient that, if changed by a small
amount, would give the largest benefit in terms of Ce.

3.2 Optimisation

Also, as in OMP, the new estimate of y is found by adjusting those
coefficients in §, whose indices are in the set T of selected ele-

ments. The coefficients not in the set T are left at zero. In OMP,
the cost function Ce is quadratic and the constrained optimum is
a minimum mean squared error estimate for which many efficient
computational strategies are available.

In the more general case, there is no universal strategy for the
required constrained optimisation. For general non-linear signal
models f(§), for which the cost function Ce is differentiable, one
could for example adopt gradient based optimisation strategies. The
performance of any specific algorithm will depend on the particu-
lar non-linearity f(¥) and cost Ce. In this paper we therefore opt
for the relatively simple gradient descent method, which is applica-
ble in a wide range of contexts, though performance benefits might
be available for any concrete example by a more refined algorithm
choice, such as, for example, a conjugate gradient solver.

3.3 Pseudo-code
We summarise the greedy gradient algorithm as follows
1. Initialise 90 = 0,710 =@

2. for n = 1;n:= n+1 till stopping criterion is met

W _ dCe
e

(a) Evaluate gradient of Ce at yl"*U : g[ 3

g ‘
(c) T = =1yl
(d) Optimise Ce under the constraint that )3["] =0foralli¢ rl

i

y[»x—]]
(b) il = arg; max

3. Output yl

An implementation of this strategy in Matlab will be incorporated
into version 0.3 of the ‘sparsify’ Matlab toolbox, available on the
first authors web-page.

3.4 Variations

There are now a wide range of variations on greedy algorithms,
many of which are also applicable to the greedy gradient algorithm
discussed here. Some possible extensions of the greedy gradient
algorithm are listed below.

1. Often, prior information on the occurrence or importance of
individual coefficients is available. In these circumstances, it
might be beneficial to use pre-specified weights in the selection
step to increase or decrease the probability of selecting individ-
ual elements.

2. Orthogonal Least Squares (OLS) [16]* is a greedy algorithm
similar to OMP, but with a slight variation on the element selec-
tion strategy. OMP is not guaranteed to select the element that
will give the smallest residual error. OLS, on the other hand,
uses a selection step that is guaranteed to lead to the smallest
residual. A similar strategy might be feasible for the greedy
gradient algorithm. However, this would require the estimation
of the minimum of Ce for each possible choice of element to be
selected, which would greatly increase the computational cost.

3. As mentioned above, the gradient optimisation suggested here
is only one possibility and more advanced strategies might
beavailable.

4. Different strategies have been proposed for OMP to select more
than a single new element in each iteration [17] [18] [19]. Simi-
lar approaches might also be feasible for the non-linear problem
discussed here.

“also known as Order Recursive Matching Pursuit or Optimized Orthog-
onal Matching Pursuit
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Figure 1: Exact recovery performance of OMP (dotted line) and
Gradient Pursuit with cost function ||®"(x — ®y)||3 (GPP) (solid
line).

5. Instead of calculating a (local) optimum in each iteration, it is
possible to use a few gradient update steps in each iteration,
before selecting a new element. This strategy was suggested for
the gradient pursuit framework introduced in [14].

6. Instead of adding individual elements to the set " in each iter-

ation, it is also possible to select a new set " in each iteration.
Such a strategy is used by the M-sparse algorithm suggested for
the linear sparse model in [20].

7. A strategy to remove elements from the set of selected elements
might also be used. This could be done, for example, based on
the difference in the cost (2) when one of the non-zero elements
in y is set to zero.

4. EXPERIMENTAL EVALUATION

We present a small set of preliminary experiments to evaluate the
proposed method. The first experiment looks at the performance
gains achievable by optimising a different cost function in the stan-
dard linear model. The other two experiments are intended to give
a flavour of the performance of the method under some possible
non-linear models.

4.1 Optimising another cost function.

As mentioned above, the gradient based greedy algorithm proposed
in this paper is not only applicable to non-linear mappings, it can
also be applied to linear mappings in the same way as OMP, but with
another measure for the approximation error. In this subsection, we
study this application of the approach.

To motivate our particular example, we use a toy compressed
sensing problem. Assume a signal y € RY is known to be sparse.
Instead of observing y directly, we only observe a shorter vector
x € RM with M < N. The observation model is linear, i.e. x = by
for some known matrix .

The OMP algorithm is built explicitly around the cost ||x —
@yH%. This measure is in the observation space and determines
how well our estimate ®¥ estimates x. In compressed sensing one
is interested in estimating y and not in approximating x. Therefore,
the error should be measured in the domain of y and not in that of
x as done in OMP.

Unfortunately, y itself is not available. However, in the noise-
less case, the observation model x = @ defines a linear subspace
of elements §. A more appropriate error measure might therefore be
to measure the distance of the estimate ¥ from the subspace defined
by x = ®§. Using an Euclidean distance, this can be measured
using

127 (@®")" (x - 29)|3. ©)
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Figure 2: Error in estimating y top and approximating x bottom for
OMP (dotted line) and Gradient Pursuit with cost function || ®7 (x —

®y)|[3 (GPP) (solid line). Shown are the averages over only those
cases in which the exact support of y was not recovered.

Note that the use of the (re-scaled) pseudo-inverse as ‘sensing ma-
trix’ has previously been suggested for the use in a thresholding
algorithm [21].

The experiment reported here used matrices ® € R'28%2%6 with
columns drawn uniformly from the unit sphere. The first® K coef-
ficients of y were then drawn from a unit variance normal distribu-
tion. K was varied from 1 to 128 and for each K, 10 000 realisations
of the problem were generated. We then run standard OMP and our
gradient based algorithm with the cost function (3), which we call
the GPP® algorithm below. In each iteration, after the selection of
an element based on the gradient of cost function (3), we used a sin-
gle gradient descent step with the gradient restricted to the selected
elements as proposed in [14]. We used the optimum step size which
for this problem can be evaluated in closed form. Both methods
were run until they had selected K elements.

Figure 1 looks at the percentage of cases in which each of the
algorithms were able to recover the exact support set of elements
in y used to generate the signal. From this graph it is evident that
using the cost function suggested here leads to a better average per-
formance in terms of estimation of y.

In figure 2, the estimation error |y —¥||3 is shown in dB in

the upper panel and the approximation error ||x — )2H%, again in dB
in the lower panel. Because the error is negligible in the cases in
which the algorithm identifies the correct atoms, the results are here
averaged over those results in which the algorithms failed to recover
the exact support set.

It is evident that even if the algorithms miss-specified the non-
zero elements, the gradient based algorithm using cost function (3)
outperforms OMP on average. However, it should also be noted that

5As the columns in @ have an i.i.d. distribution, it doesn’t make a dif-
ference how the locations of the non-zero elements are chosen.

The second P can stand for pseudo-inverse or alternatively for projec-
tion.
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Figure 3: Exact recovery performance for different levels of sparsity
in non-linear magnitude and phase estimation example.
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Figure 4: Error in estimating y top in the non-linear magnitude
and phase estimation example. Shown are the averages over only
those cases in which the exact support of y was not recovered. Also
shown are the error bars.

calculating the gradient of cost function (3) requires the solution
of a linear equation involving the pseudo inverse of ®. We here
evaluated and stored this pseudo inverse at the start of the algorithm.

4.2 Sparse magnitude and phase of complex variables.

This experiment was motivated by coherent imaging applications.
Assume complex valued data is measured and the images of in-
terest are the magnitude and phase of the complex data. Further
assume that the magnitude and phase is sparse in some transform
domain. In compressed sensing for imaging applications, instead of
observing the complex valued image data, a subset of coefficients
is observed in another domain, such as, for example, the Fourier
domain.

We here look at an artificial example. We generated two vec-
tors Z and § of sparse coefficients with K non-zero elements, each
drawn from a normal distribution. These were transformed with
the inverse wavelet transform and were then used as the magnitude
(z) and phase (y) of complex valued data’. The M observations
were generated by multiplying this complex data with a matrix ®
with real coefficients drawn from an i.i.d. normal distribution. The
model is then

x = B[z xeP);,

where [-]; denotes a vector with elements indexed by i. We here
fixed the dimension of the complex valued data to N = 256 and
used M = 128 complex valued observations x.

7We here normalised the phase to be between — and 7.
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Figure 5: Exact recovery performance for different levels of sparsity
in phase estimation example.

We repeated the following experiments for a range of sparsities,
averaging the results over 1000 realisations. We run the algorithm
derived in this paper to recover as many non-zero elements as there
were non-zero elements in the original data. Figure 3 shows the per-
centage of cases in which the algorithm was able to exactly identify
the coefficients that were used to generate the data. Figure 4 shows
the average ratio of the signal energy to the error energy expressed
in dB. We again average the error only over those cases for which
the algorithm did not recover the exact support set. It is interesting
to observe that for very sparse signals, if the algorithm does not re-
cover the correct support set, then the estimation error is relatively
large. This seems to be an artefact of only plotting the error for the
cases in which the support set was not identified. For example, if
there is only a single non-zero element to be recovered, if the in-
correct element is identified, the error has to be large. On the other
hand, if there are many non-zero elements, only a few elements
might be incorrectly identified in which case the error will be small.

4.3 Sparse phase of a complex image with known magnitude.

The second example is similar to the previous one, but this time
using two dimensional image data. To have more control over the
problem, we use artificial two dimensional complex valued images.
Each was generated using a phase that was sparse in the wavelet
domain. We found the estimation of the phase to be more difficult
in general. In this example, the magnitude was therefore assumed
to be uniform and known. The task was to estimate the phase from
observations of subsets of the Fourier coefficients of the complex
image.

The image size was 64 x 64. We here look at the performance
in terms of approximation of x, estimation of y and recovery of the
exact support.

In this example, we kept the number of non-zero elements
K fixed but changed the number of observations M. Due to the
high computation cost for this example, we here used only 50
experiments for each observation dimension. The percentage of
cases in which the exact sparse support set was recovered is shown
in figure 5. In figure 6 we show the average estimation error
ly —9113/llylj3 in dB (upper panel) and the average approxima-

tion error ||x — %||3/[|x[|3 (in dB) in the lower panel. The results
are again only averaged over those results in which the algorithm
failed to recover the exact support set. Also shown are error bars.

Note that we here let the algorithm extract twice as many ele-
ments as were used to generate the signal. Because the observations
were noiseless and allowed an exact sparse representation, if the set
of identified elements included the correct element, the hope was
that the other elements would be set to zero or negligible values.
This approach was found to work well in practice.
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Figure 6: Error in estimating y and approximating x bottom in
the phase estimation example. Shown are the averages over only
those cases in which the exact support of y was not recovered. Also
shown are the error bars.

5. CONCLUSIONS

In this paper we have looked at a general non-linear sparse mod-
elling framework equipped with a quite general measure of approx-
imation error and introduced a greedy gradient based algorithm for
coefficient estimation. In the standard linear model, striking results
were achieved with a cost function measuring the error in the coeffi-
cient domain. In this case, the greedy gradient algorithm was found
to outperform OMP.

Solving the general non-linear problem is, however, more diffi-
cult and one could think of examples which do not even have unique
solutions. Also, not only do we have to identify the set of non-
zero coefficients, finding the optimal values of these coefficients is
also not trivial as it might, for example, involve the minimisation
of complicated cost functions with several local minima. It there-
fore seems clear that a general strategy that performs well on all
problems is impossible.

Nevertheless, the results presented for non-linear models indi-
cate that the proposed method can find the exact support set in cer-
tain cases. The performance intuitively depends on the non-linearity
involved. In particular, the gradient of the cost function with respect
to the individual coefficients has to be ‘well behaved’. For example,
the selection criterion depends on this gradient to be able to indicate
which coefficients to include. For highly non-linear models, this
requirement is likely not to be fulfilled. A theoretical analysis of
this remains to be undertaken. Also, whilst the preliminary exper-
iments reported here are encouraging, we are currently evaluating
the method on more challenging non-linear problems and are also
planning the evaluation on real world data.
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