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ABSTRACT at low bitrates. However, at high bitrates, it is necessary t
In previous work [10], we have proposed a new signal repreencode a high number of coefficients in both approaches, and
sentation for audio coding, where the signal is decomposeifie cost of encoding large significance map becomes pro-
in a union of MDCT bases using matching pursuit. The re-ibitive: in this case our approach is outperformed by the
sulting coder gave better performance than a transfornrcodgtandard transform approach.
at low bitrates but slightly worse at high bitrates. In thés p In this paper, we propose a new decompaosition algorithm
per, we propose an adaptive matching pursuit algorithm thahat, under mild assumptions, provides the “best of both
in the first iterations decomposes the signal into the redurworlds”: the same performance as the previous approach [10]
dant union of MDCT bases, and then, when the residual erat low bitrates and the same performance as transform coding
ergy decay becomes too low, switches to an orthogonal basé high bitrates. The signal is first approximated in the over
(one of the MDCT bases). We investigate simple strategiesomplete set of time-frequency atoms used in [10] (union of
to determine in which iteration switching is near-optimal i 8 MDCT bases), and then the residual of this approxima-
terms of rate-distortion. We present in this paper a prgmty tion is decomposed using an orthogonal transform (one of the
audio coder based on this algorithm, that reaches the perfdiDCT bases). The signal decomposition is performed on the
mance of the previous approach at low bitrates and the onghole signal using a modified Matching Pursuit (MP) algo-

of transform coding at high bit rates. rithm, with an adaptive dictionary that is changed locaky i
the union of MDCT is reduced to one MDCT on a frame-by-
1. INTRODUCTION frame basis. The decomposition is then encoded using simi-

When transparency or near-transparency is required statlar bitplane encoding methods as used in previous work [10].

of-the-art audio coders are mostly transform-based and ge‘I%he main issue is the design of an efficient strategy to decide

erally use the Modified Discrete Cosine Transform (M DCT).?rgr;hfhg%%g%g?;%&Z t'éetrﬁ él?:g}:\r;IZtgl\éiecr;igr? 2;5 » to switch

One example of such a coder is MPEG-4 Advanced Au- o . o .
P A similar idea is found in image coding [9], where an

i ing (AA hich i I | au-
dio Coding (AAC) [6] which is able to encode general au ercomplete set of 2D atoms is used to model the edges of

dio at 64 kbps per channel with a near-transparent qualityV€ X ; A
However, MDCT-based coders are known to introduce sever@? image and the residual of this approximation is coded us-
ng a wavelet transform. However, this approach is based on

artefacts at lower bitrates and they are now outperformed b}{%
L

other coders. These new coders are either purely parametf}‘© different dictionaries and two different coding metkod

a.SSC [2 hybrid (e.g. HE-AAC [3], AMR-WB+ [7]) |he image coder combines these two different approaches
(e.g [2]) or hybrid (e.g [3] (7 a rate-distortion way. What we propose is different as we

and allow better performance than transform coding at 24!

kbps per channel or lower. However, parametric and hybri§/S€ & unique dictionary and a unique coding method, both are
coders only model a subspace of the input signal and cordapted online using the novel switching procedure prapose

sequently cannot reach transparent quality, even at high bt this paper.
trates. Another similar approach is found in audio coding [11],
In [10], we have proposed a new signal representatioMVhefe SSC_is used to approximate a signal ar_ld thg residl_,lal
that allows better performance than transform coding at lovis coded using a MDCT-based coder. A rate-distortion opti-
bitrates while allowing transparent quality at high bigmt Mmization is used to allocate the available bit budget among
This approach is related to transform coding : it could bethe two coders. However, the same remarks apply here. This
seen as a generalization of the transform approach sirge it@Pproach is based on two different paradigms, which is dif-
based on a simultaneous use of a union of MDCT bases. Thigrent from our approach as we propose a single paradigm
allows us to use efficient scalable encoding techniques usd@r the signal representation and the coding.
in transform coding (e.qg. [4]), while producing a sparser de  The remainder of this paper is as follows. In section 2,
composition than the transform approach. In comparisan, fowe introduce the signal model and notations. In section 3,
the same target SNR, there are less significant coefficients tve recall the decomposition algorithm used in previous work
encode than in the transform case, but encoding the pararand describe the new approach. In section 4, we describe
eters of the significant coefficients (the significance map) ihow the decomposition is encoded. In section 5, we derive
more costly. In [10], we have showed that the tradeoff bean optimal parameter value for the adaptive decomposition
tween the number of significant coefficients, and the codinglgorithm. In section 6, we present the results, and finadly w
cost of these coefficients, significantly favors our apphoac conclude in section 7.
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2. SIGNAL MODEL Instead, it is possible to find a sub-optimal solution using

. . . .g. Matching Pursuit (MP) [8]. MP is an iterative algo-

\I\/AVgé)_rrokr))osed In rglo] ?h5|gnagm0(ljel tﬁsed on i umolnzgft ithm which selects the optimal atom at each iteration (see
ases, wnere the window length ranges from %Igorithm 1in[10]). We present in the following a modified

16384 samples (i.e. from 2_'9 t0 370 ms) in powers of 2. Wg ooy of this algorithm that allows us to reduce the size of
use the same model here : the smallest windows are need dictionary adaptively

]t(grnrwnooddeell}/r? r)(oihag?azgig:s g)rmeéirgrirsw.:_?%ogghg&ﬁsefu Standard MP is performed globally on the whole signal.
is then decgm ogsed as av%//ei htgd sum of funcliprs R To better adapt the model to the local statistics of the sig-
P 9 Ty nal, we consider in the following temporal segments called

plus a residual of negligible energy “timeslots” whose length is equal to the half of the maxi-
f= % q r 1 mum analysis window length (see Fig. 1). These slots group
yg- v+ @ Coefficients in subsets, defined as

wherea, are the weighting coefficients. The set of functions —P +1

y g 7 . . — fl p m —
2 ={9gy,y € I'} is called the dictionary and is a union i Zq= | Ompk | floor p! =q (4)
MDCT bases (called blocks). The functiogscalled atoms m

are defined as: with P, = 2Y="-1 is the number of frames of bloak in

2 T 1+Lm 1 each timeslot. Since the first and last frames of each block
Impk(N) = Win(u)/ L—COS[L— <U+ > > (k-l- 5)} are discarded in this scheme, it is necessary to fill the sig-
m m nal f with zeros at both sides before the decomposition to
avoid any problem at the edges. In the timesigt the time
3) support of the largest scale atom includes all smaller scale
atoms. Consequently, we define the time suppgrof the
andmis the block indexp is the frame indexk is the fre-  timeslot.# as the time support of the largest scale atom.
quency indexLn, is the half of the analysis window length At every MP iteration, one atom is picked up, that can
of block m (defined as power of twam = Lo2™), Pmis the  belong to any timeslot. We thus defing(i) the MP iterations
number of frames of block, T, is a time offset introduced where the selected atom belongs to the timestgt The
to “align” the windows of different lengthdf, = 5, see Fig.  atom selected at iteratiomy(i) decreases the energy of the
1) andwim(u) is the sine window defined an=0,..,2L,—1.  residual on the time suppddy. We thus define the SNR of
the timeslot~y as

where
u=n-—pLyn—Tpn.

SLOT SO SLOT 51 SLOT SZ

IR
_— 5
1RB, 12 ©

and the SNR decay of the timeskgt as

SNRy(i) = 10logq

BLOCK 2

IR 12
Brockt DECqy(i) = 10 logo | ——~— (6)
IRG" 112
q
with Rﬂq is the part of the residual at iteratiorcorrespond-
BLOCK 0 ing to the time supportly. Fig. 2 plots the decay curve

DECq(i) as a function ofSNRy(i), obtained with the stan-
dard MP for a timeslot of an audio signal and two dictio-
naries: one single MDCT with window length 2048 samples
Figure 1:Analysis windows for M= 3 different MDCT win-  and the union of 8 MDCT bases presented in Sec. 2. In the
dow sizes. Dashed vertical lines indicate timeslots. first iterations, each atom of the overcomplete dictionary d
creases significantly the SNR of the timeslot, but after some
iterations, the SNR decay becomes small and almost equal
3. DECOMPOSITION ALGORITHM to the one of the orthogonal dictionary at same SN.R. This is
the same phenomenon as the one described in [8]: the atoms
In the case of the orthogonal transforM & 1), 2 forms  extracted in the first iterations are the coherent strustafe
a basis ofRN and the atomgg,} are linearly independent. the signal and after some iterations the resigtieonverges
The decomposition of over 2 is then unique, and is simply to a process called the dictionary noise. When coding such
obtained by projecting the signal on the atoms. a decomposition, there is a gain in the first iterations but af
The dictionary is overcomplete whéh > 1: the dimen-  ter some point, it is less costly to encode an atom from an
sion of 2 is superior to the dimension of the signal, and theorthogonal dictionary. Consequently, from a coding point o
decomposition of in Z is not unique anymore. We are look- view, it is better to decompose the first iterations in theoani
ing for a sparse solution, where the signal is represented byf MDCT bases, and then to reduce the dictionary when the
a small number of atoms. Finding an optimally sparse soludecay becomes too low. The proposed modified MP is de-
tion is a NP-hard problem if the dictionary is unrestrictéfi [ tailed in Alg. 1.




16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

0.21 Then, values are mapped according to:
- --1xMDCT
0.18 ——8xMDCT Vi = Gy () 9)
o1 with
0.14 i = (kPh+p)M+m (10)
@012 Then, each vector of interleaved coefficients is encoded
€ 51 using a bitplane encoding algorithm. In [10], the same algo-
g rithm as in [4] was used. The basic principle of bitplane en-
2 0.08 coding is to send successively each bitplane starting fham t
0.06 most significant bitplane. This is done using a scheme in two
' passes: the significance pass and the refinement pass. The
0.04 significant pass transmits the subset of jktl bitplane cor-
0.02 responding to thg-th most significant bits of the non already
' _ significant coefficients. The significance pass also tratssmi
0 ‘ : R i S ‘ the sign of the new significant coefficients. The refinement
0 ° 10 SNRl(% dB) 20 25 30 pass transmits the subset of théh bitplane corresponding

to the j-th most significant bits of the already significant co-
efficients. All existing bitplane encoding algorithms diff
essentially in the way they perform the significance pass. Th
approach used in [4] and [10] is based on adaptive Golomb
codes: the significance pass does not transmit directly the

Figure 2:SNR decay in function of SNR for a timeslot

Algorithm 1 Adaptive MP bits in the current significance map but instead transmés th
Require: f; 2 ={g,,yer} number of zeros between ones using adaptive Golomb codes.
Ensure: ay We use here a slightly modified version of this algorithm.
n=0 The first bitplanes have the same size as the length of the
RO=f vectorv;, i.e M = 8 times the number of signal samples in
ay=0,Vyerl a timeslot. After the dictionary switch from overcomplete
repeat to orthogonal, all remaining bitplanes contain only signifi
Yopt = argmaer | <rgy >| cant poeffluents.fro.rr_\ the reduceq dictionary. Conseqy;entl
C=< 1, Gy > the size of the significance map is reduced after the switch.
RWL=R_cg One bit per bitplane is added in order that the decoder knows
is the timesio%lolprtldex of when the significance map size is reduced (“0” = full over-
ﬂc DEC, < SWthen Yopt complete dictionary, “1” orthogonal transform).

remove all atoms in timeslat except those from the 5 OPTIMAL SWITCHING PARAMETER

orth. dict.
end if The proposed adaptive MP depends only on one parame-
Oyopt = Oy +C ter SW, which is the energy decay per coefficient under
until only atoms from the orth. dict. remain in the dict. ~ which it is better to switch from overcomplete to orthogo-
Project the residud®” on the orth. dict. nal. Of course SW can be estimated on-line, by comput-

ing at each iteration the most favorable rate-distortion-co
4. CODING figuration. However, since thg coeffic_ients are not en_c_od_ed
: separately but in bitplanes, this technique leads to afsigni
As in [10], the coefficients are first interleaved in each 8me cant complexity increase (at each iteration, one has t*loo
lot to produce a vector of coefficients per timeslot. Then, weahead” a large number of steps to decide on the best strat-
use a slight modified version of the coding algorithm usectgy). Instead, we would like to compute a fixed valueSav
in [10]: each vector of interleaved coefficients is encoded u that is approximately optimal (in terms of rate-distorion
ing an adaptive bitplane encoding algorithm that reduces thwithout any additional computation in the MP loop.
size of the significance map after the switch. In the following, we consider one particular sl@t,, and
We first recall the interleaving process used in [10]. Towe suppose that the switch is done for that timeslot at the
simplify notations in the following, we introduce a new iterationng(iswitcn). We make the assumption that the SNR
frame indexp’ = mod(p— P}, + 1,P}) such that the frame decayDEC, in that timeslot is constant for the few itera-
index starts at 0 in each timeslot. The mapping process b&ons following the switch (this is approximately verifieid i
tween the coefficients of a timeslot, yx and the corre- the switch does not occur in the first iterations). Then, we
sponding vector values is then formalized as follows. First consider two cases: if at iteration(iswitch), We keep in the
we define a recursive functiarthat performs a permutation overcomplete dictionary (no switch), the decay value would
of the frames: be DEC(?; if at iterationng(iswitch), the dictionary is reduced
r(P,M-1)=p (7)  to an orthogonal dictionar¥ (switch), the decay value would
be lower and equal tOEC;. We now make the empirical

. observation that there exists a simple relation betv%ﬁg’
(o, m) = r(%a m+1) if p’is even ®) andDEC] . We decompose a 20 seconds signal composed of
’ r(e 2*1 ,m+1)+P,., ifpisodd several audio types contents (monophonic, polyphonid) wit

and form<M -1
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Figure 3: Decay of the orthogonal dictionary as a function

of the overcomplete dictionary; the decay is computed on theijgyre 4: Distortion per bits as a function of the SNR decay
100iterations following the switch. for two dictionaries.

the adaptive MP and several values of the param®®r  with p= g—”T for the orthogonal dictionary and

We also decompose the same signal in the overcomplete dic- e

tionary with the standard MP (no switch) as a reference to RO 1, . ~ - -
computeDECY. In each timeslot, and for each parameter =5 (—=Plogx () — (1 - P) logy(1 - p)) (14)
value, we compute the mean of the decay on the 100 iter-

ationsng(i) following the STW.itCh at i.teratiomq(iswitch.) for  with g = ,\',\I'Tb(:n for the overcomplete dictionary. In short,
each case and we pIBEC; in function of DEGY. Fig. 3 each coefficient in the bitplane after the switch iteratien d
shows the obtained values and a I|nearTapprOX|mat|on. Wereases the SNR HYEC? dB at a cost oR® bits if we re-

thus approximate the relation betweRBCy andDECY as:  main the overcomplete dictionary, and decreases the SNR by
DEG = yDEG, with y=0.6. DEC; dB at a cost ofR" bits if we switch to the orthog-

~ Now, as we have supposed that the SNR deB&Zy  onal dictionary. Consequently, we decide to switch to the
in a timeslot is constant for the few iterations following orthogonal dictionary iﬂDECJ/RT > DEC?/RO. We are

the switch, and if we neglect the influence of the neighbory,ow able to com1pute the optimal valS&vnumerically. Fig.

ing timeslots.#4—1 and .41, the energy and the absolute 4 plotsDEC] /R" and DECY/R® in function of DECY for

value of the coefficients have approximately the same deV: 0.6. We finally find numerically the optimal parameter

cay: DECg) if we remain in the overcomplete dictionary, and value which is approximatelgW= 0.025 (numerical simu-
DEG; if we switch to the orthogonal dictionary. As a bit- |ations have shown that the exact value is not really cijtica
plane corresponds to a division per two of the absolute value

of the coefficients, we are now able to compute the approxi- 6. RESULTS

mate number of coefficients per bitplane: . .
P P We have tested our algorithm on the same signals as used

20 in [10], these are 4s-long signals sampled at 44.1 kHz: bag-

Nb' = DECT Ioa.10 (11)  pipe, glockenspiel, harpsichord, horn, orchestra, vioilve
DEG; log;10 compare three coders based on three different signal repre-
. sentations. First, the two coders compared in previous work
for the orthogonal dictionary and [10], these are a transform coder based on a single MDCT
(M = 1) with an analysis window length of 2048 samples,
NEC = 20 (12) and the overcomplete approach coder with the standard MP
DECY log,10 in a union of 8 MDCT bases. These two coders are com-

pared with the novel coder proposed in the paper, based on
for the overcomplete dictionary. As the major contribution the modified MP with an adaptive dictionary that switches
the bitrate is due to coding the significance maps, in followfrom 8xMDCT to 1xMDCT (with length 2048 samples). We
ing computations we neglect the sign and refinements bitsemark that contrary to [10], the evaluation measure isdase
Assuming that the coding cost for the significance map cahere on SNR as the decomposition algorithm is based on
be estimated by entropy, we can then compute the averagdNR too. More relevant objective measure for audio cod-
rate per significant coefficient as ing such as PEMO-Q [5] or even listening tests are planned

for future work. The results are shown on Fig. 5.

1 It clearly shows that the performance of the new coder

RT = P (=plogz(p) — (1~ p) logz(1~p)) (13)  is the same as the previous approach at low bitrates and the
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60

2 an orthogonal dictionary when the energy decay is below a
”éimgg threshold. We have then derived an optimal switching pa-
— Switch 0.025 7 rameter value. Finally, we have shown experimentally that
‘ the resulting coder reaches the performance of the previous
7 approach at low bitrates and the performance of a transform

coder at high bitrates.

; This study also raises some questions: first, it is not clear
7 whether there is a fundamental reason for such a simple (ap-
. proximate) relationship betwe@EC? andDEC] . Second,
P this leads to wonder if there are more signal-independent

N
o
T

N

SNR (in dB)

N
o
T

\
\

O I I I I I
2 4 8 16 32 64

Bitrate (in kbps)

128 256

. o . . : 1
Figure 5:Mean SNR for six signals in function of the bitrate [1]
for 3 coders: transform coder with 1XMDCT, standard MP

with 8xXMDCT, adaptive MP from 8xMDCT to 1xMDCT with 2]
a switch parameter value of SW = 0.025.

(3]

same as transform coding at high bitrates. Preliminarg test
also seem to indicate that the approximate switching scheme
presented above is very close to the optimum. Fig. 1 com-[4]
pare the computation time needed to code the six files with
the three approaches: the single MDCT coder, the propose?
adaptive MP coder and the standard MP coder (with a pre- 5]
cision of 60 dB). Though it is still much slower than a sin-
gle MDCT, the new approach is faster than the previous ap-
proach.

(6]

. o (8]
Table 1: Normalized computation times on a Core 2 Duo
2.0GHz laptop (in seconds/seconds)

(9]

7. CONCLUSION
[10]

The scalable audio coder previously proposed in [10] gave
better performance than transform-based coding at low bi-
trates but slightly worse performance at high bitrates. The
signal representation was based on a standard Matching Pur-
suit decomposition in a redundant union of MDCT bases
We have showed that the energy decay in this overcomple{e ]
dictionary is high on the first iterations and becomes almost
equal to the decay of an orthogonal dictionary after some it-
erations. As it is less costly to encode atoms in an orthogona
dictionary, it is better from a coding point of view to decom-
pose the residual in an orthogonal dictionary when the en-
ergy decay becomes too low. We thus have proposed a mod-
ified MP which switches from an overcomplete dictionary to

- techniques to perform the switch near the optimum. Fi-
- nally, further studies will have to study whether the rate-
- distortion optimization as performed here, with distantas
- mean quadratic error, is also optimal from a perceptualtpoin

of view.
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