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ABSTRACT

In this paper, a method of stationarization of nonsta-
tionary data is proposed in the signal detection problem.
The signal to be detected is corrupted in a nonstationary
random noise whose model is given by an ARMA(p, q)
model. The time-varying coefficient parameters of the
ARMA model are estimated by the Kalman filter. The
stationalization of nonstationary observation data based
on the estimated coefficient parameters leads us to the
conventional binary hypothesis-testing for signals in sta-
tionary random noise.

1. INTRODUCTION

Needless to say, the signal detection is one of the most
important problems in the signal processing area for a
long time, and a great deal of investigations has been
done up to the present time. Most of the conventional
approaches are based on the (binary) hypothesis-testing,
and treat the corrupting (additive) noise as a station-
ary random process because stationary process is rather
easy to handle and moreover its (invariant) statistical
parameters can be readily calculated under the ergodic
hypothesis. However, it will be no doubt that the actual
random noise such as environmental noise is considered
to be nonstationary because its statistical properties are
not always unchanged but vary according to underlying
physical circumstances.

Thus the problem of detecting signals in nonstation-
ary random noise is the more important. For such prob-
lem, several interesting methods have been proposed.
For example, Haykin and Bhattacharya [1], [2] treat
this problem and proposed a method named the modu-
lar learning strategy which incorporates such three fun-
damental blocks as time-frequency analysis, feature ex-
traction and pattern classification. Also, Haykin and
Thomson [3] proposed an adaptive detector based on
learning for the detection of the target signal buried in
nonstationary background noises.

Philosophically different from their method, the au-
thors have proposed an approach to the signal detection
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in nonstationary random noise, a new method of sta-
tionarization of the observation noise. The key of the
approach is to convert the nonstationary random noise
to a stationary one, and this procedure was named as
stationarization of the observation data.

In [4] and [5], the signal detection is performed by
testing the stationarized observation data whether there
is some non-stationarized portion or not, based on the
KM50-Langevin equation (which is the AR model with
time-varying coefficients). If there exists such a portion
in the data, the existence of a signal is decided. Related
to the signal detection, the stationarization approach
is also used in [6] to estimate the time-delay of signals
in nonstationary random noise, incorporated with the
Wigner distribution-based maximum likelihood estima-
tion.

In this paper the signal detection problem is investi-
gated using the stationarization approach to nonstation-
ary data. The model of the corrupting noise is given by
an ARMA (p, ¢) model with unknown time-varying coef-
ficients. These coefficient parameters are estimated from
the (original) observation data by the Kalman filter.

2. PROBLEM STATEMENT

Let {y(k)} be the (scalar) observation data taken
at sampling time instant ¢, (kK = 1,2,--), and assume
that it can be expressed as

y(k) = s(k) +n(k) (F=1,2,--), (1)
where s(-) is a signal to be detected, whose form is surely
known, and is assumed to exist in a brief interval if it
exists; and n(-) is the nonstationary random noise. In
consequence, the observation data y(k) becomes non-
stationary, but its trend time series is assumed to be
removed by the process

y(k) = A?Y (), (2)
where Y (k) is the original data received by the receiver;
AY (k) =Y (k) — Y(k — 1); and d indicates the order.

In this paper the random noise n(k) is assumed to

be given as the output of ARMA(p, ¢) model with time-
varying coefficient parameters:

n(k) + Y ai(k)n(k —i) = Zﬂj(k)w(k —J)

+w(k), (3)
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where w(-) is the white Gaussian noise with zero-mean
and variance parameter o2; {a;(-)} and {8;(-)} are
slowly and smoothly varying parameters to be specified.

Then our purpose is to propose a method to detect
the signal s(k) from the noisy observation data {y(k)}.

The procedure taken in this paper is as follows:

(i) First, based on the noise model (3), coeffi-
cient functions {c;(-)} and {8;(-)} are estimated using
Kalman filter from the observation data {y(k)}.

(ii) Using the estimates {&;(-)} and {f3;(-)} obtained
in (i), the observation data y(k) is modified to become
stationary. This procedure is called the stationarization
of observation data.

(iii) Using the stationarized observation data §(k),
the signal detection is based on the model

§(k) = 3(k) + w(k), (4)

where §(k) is the modified signal. Equation (4) is famil-
iar in the conventional signal detection problem where
the noise is stationary.

3. STATIONARIZATION OF
OBSERVATION DATA

Recalling the assumption that the duration of the sig-
nal s(k) is short, first consider the signal-free case, i.e.,
y(k) = n(k), then the observation data y(k) is expressed
by (1) and (3) as follows:

P

y(k) = = > ai(k)y(k — i) + Z Bj(k)w(k = 7)

+ w(k). (5)

In order to estimate the time-varying parameters
{a;(k)} and {B;(k)} in (5), suppose that they change
from step k — 1 to k under random effects {e.(k)}. De-
fine vectors

—a (k) —e1(k)
| maw® || e
= gy | o= Ty |- ©
Bl (k)
Then, {a;(k)} and {8;(k)} are subject to the dynamics,
z(k+1) = z(k) + v(k), (7)

where {e.(k)} are assumed to be Gaussian with zero-
: 2
means and variances 77, -+, T, .

Then, Eq. (5) is expressed formally as
y(k) = H(k)z(k) + w(k) (8)
in which H (k) is given by

H(k)=[y(k—1), -, y(k —p),

w(k—1),-- wlk—q)]. (9)

At this stage it should be noted that the matrix H (k)
consists of the (unmeasurable) past noise sequence

{w(-)}. To remedy this inadequate situation, we resort
to replace it by

Um(k = 1), -, vm(k—q)]  (10)

in which {v,,,(-)} is the modified innovation sequence
defined by

vm(l) =cO)v(l) l=k—qk—q+1,--,k—1) (11)

v(€) = y(0) — H(Oz(L)e 1) (12)

1
2

ol0) = |1+ HHOPEC-DATW| . (13)

Here, Z(¢|¢—1) and P(¢|¢—1) are the one-step prediction
and its covariance matrix computed by Kalman filter for
the past interval.

It is a simple exercise to show that the statistical
properties of v,,(+) is the same as that of w(-), ie.,
E{v,(k)} = 0 and E{|lv,(k)|?} = 0% (for proof, see
Appendix). Then, instead of (8) we have the expres-
sion,

y(k) = H(k)z(k) + w(k). (14)

The procedure for computing H (k) is stated as fol-

lows:
(i) Preliminaries: Assume for the past k(< 0) that
{Vm(=1),vm(=2), -, vm(—q)} are set appropriately
(may be set all zero), and preassign (0| — 1), P(0| — 1)
and H(0) as initial values.

Then, at time k (k=0,1,2,--+)

(ii) Computation of v(¢) and c¢(f): Compute the inno-
vation v(f) and coefficient ¢(¢) by (12) and (13) using
H(0) = [y(t=1), -yt —p),vm(f = 1), v (L — q)].
(iii) Computation of vy, (€): Compute vy, (£) by (11) us-
ing v(¢) and c(€) obtained in the previous step.

Repeat Steps (ii) and (iii) for £ = k — ¢,k — ¢ +
1,---,k—1 to obtain H (k). In computing (12) and (13),
Z(¢|¢ — 1) and P(¢]¢ — 1) are computed by the Kalman
filter: [7]

E(0+1[6) = &(0)0) (15)
E(0) = 200 — 1) + K(£)v(¢), (16)
K() = — L
H(O)P(L|e —1)HT (¢) + 02
Pl —1)HT(0) (17)
P +1|0) = P({)0) + Q (18)

PJ0) = P(€)¢ — 1) — K(OH(O)P)f — 1),  (19)

where Q = diag {77,---, 77, ,}-

Thus, the estimates of the coefficient parameters
{a;(k)} and {B;(k)} are obtained by the Kalman filter
constructed for (7) and (14) (whose form is the same as
(15)-(19) without replacing ¢ by the present k).
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Under the basic assumption that the coefficient pa-
rameters vary slowly and smoothly, they can be treated
like constants in an interva} I;, around the current time
k. Write them as 6y and ;3 in I. Replacing the past
{w(k—34)} in (5) by the statistically equivalent sequence
{Um(k — j)}, define the sequence (k) by

k) + Z Gipy(k — 1)
- Z Biktm(k — ). (20)

Then, we have the following adequate approximation for

(5),
§(k) = w(k) (21)

which implies that the sequence {j(k)} is stationary be-
cause w(k) is the stationary white noise.

4. SIGNAL DETECTION

After obtained the estimates of coeflicient parame-
ters, the observation process (14) may be written using
estimates as

y(k) = H(k)(k|k) +w(k) (22)

or

MQ

P
k) + Z Qiry(k —1)
i=1

Now, let us revive the signal s(k) in the observation.
To do this, replace {y(k)} formally by {y(k) — s(k)} in
(23) to obtain

+3 Bk =) k) (@0

or
g(k) = 5(k) + w(k), (4)bis
where §(k) has the same form as (20) and
p
k) + Y dups(k — i), (25)
i=1

Note that (4)pis is familiar to us as the mathematical
model for the detection problem of signals in stationary
noise (e.g., [8]).

Now, consider the binary hypotheses: H! : (k) =
3(k) + w(k), and HO : §(k) = w(k), and let Y
be the stationarized observation data taken up to K
(k=1,2,---,K), Yx = {g(k),k =1,2,---,K}. Since
the additive noise w(k) is white Gaussian sequence with

zero-mean and variance o2, the likelihood-ratio function
A(K) = p{Yk|H'}/Yi|H®} is evaluated as follows:

K
1 {g(k) — 5(k)}?
[T@m) 2 exp g
AK) =*=L { ’ } (26)

K

H (2m)~ B exp y (k)

- 202
We use rather its logarithmic form,

L(K) == In A(K)
K 1 K
Z ) Z (27)

as the signal detector.

Q|,_.

5. SIMULATION STUDIES

In this section, we provide a typical set of several sim-
ulation results to demonstrate the proposed method.

(i) Ezperiment 1.

The top of Fig.1 depicts a sample path of the obser-
vation data generated by calculating the output of the
ARMA (4, 1)-model:

Zaz

k—i)+ B(k)w(k — 1)

+ w(k).
Time-varying coefficients {«;(k)} and B(k) are set as

a1 (k) = —1.245in(0.002k — 0.95)
iz (k) = 0.38 — 2 cos(0.004k — 1.89)
as(k) = ay(k), ou(k)=1, B(k)=15.

The bottom of Fig.1 shows a signal embedded in the
observation data around k& = 300 given by

s(0) = 12278 gin(1.260),

where ¢ = k — 300. Figure 2 depicts trend removed data
and stationarized data (k). For the Kalman filter (15)-
(19), the parameters are set as @ = diag {0.05, 0.05,
0.05, 0.05, 0.05} and o = 40. It should be noted that
from Fig. 2 the observation data is well stationarized
and that even in this figure the signal emerges from the
background noise.

Figure 3 shows the result of signal detection by the
current log-likelihood ratio function L(K). Clearly, it
exhibits a salient peak around the true time instant k =
300 and this shows the existence of the signal.

(ii) Experiment 2.

Efficacy of the signal detector proposed in this paper
is also tested for the pulse signal.

Figure 4 depicts observation data and embedded
three pulses. Random noise n(k) is generated by the
same manner of previous simulation with same coeffi-
cients «; (k) and G(k). As a signal s(k), a train of pulses
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Figurel. A sample path of the observation data y(k) (top)
and the embedded signal s(k) (bottom).
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Figure 2. The trend removed data (top) and the
stationarized observation data §(k) (bottom).
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Figure 3. Log-likelihood function L(K).

with same magnitude is considered:
20 for D; <k<D;+5 (:1=1,2,3)
s(k) =
0  otherwise,

where D; = 200, Dy = 500, D3 = 800.

Figure 5 depicts trend removed data and stationar-
ized data (k). The parameters of Kalman filter are set
as the same of previous experiment. Figure 6 shows the
result of signal detection. Clearly, log-likelihood ratio
function L(K) has large value around each time when
each pulse exists. Thus the signal detection is well suc-
ceeded.

6. CONCLUSION

The efficacy of the proposed signal detection method
based on the stationarization of nonstationary observa-
tion data has been confirmed by simulation studies. The
key to use the Kalman filter to estimate the coefficient
parameters of the ARMA noise model is laid on the re-
placement of the unobservable past noise sequence by
the equivalent (modified) innovation sequence which is
observation data-measurable. The stationarization of a
nonstationary data as introduced in this paper will have
potential ability to treat the nonstationary noise or ob-
servation data in the signal processing.
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Figure4. A sample path of the observation data y(k) (top)
and the pulse signal s(k) (bottom).
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Figure 5. The trend removed data (top) and the
stationarized observation data §(k) (bottom).
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Figure 6. Log-likelihood function L(K).

Appendix. Proof of Statistical Equivalence Between
{w(k)} and {vm(k)}
The mean of vy, (k) is clearly zero. Indeed,
Evm(k)} = c(k)E{v(k)}
= c(k)E{y(k) — H(k)2(klk — 1)}

Here, recalling that y(k) is given by the form (14), we
have

c(k)[H (k) E{x(k) — &(klk — 1)} + E{w(k)}]

c(k)H (k) E{&{x(k) — 2(k|k — 1)[Vio1 }}

c(k)H (k) E{&{x(k)|Yi-1} — 2(k|k — 1)}
=0,

where Y1 = {y(£),0 <l <k —1}.
Next, the variance of v, (k) is evaluated as follows:

E{vm(k)} = (k) EW (K)}
= A(R)E{H (K)[x(k) — &(k[k — 1)] + w(k)]*}
= A (k) [H(k)E{[x (k) — &(k[k — 1)]

[w(k) — @(klk — D] YHT (k) + E{w? (k)}]
= A(k)[H(k)P(k|k — D) HT (k) + o).

If we select c(k) as (13), the variance of v, (k)-sequence
becomes o2 which is just the variance of {w(k)}.

(Q.E.D.)



