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ABSTRACT

For any practical direction estimation and tracking system
in array processing, estimating the number of incident sig-
nals accurately and tracking its possible changes in an on-line
way is a critical requirement. In this paper, a new QR-based
adaptive detection algorithm is proposed to estimate the co-
herent/incoherent narrowband signals impinging on a uni-
form linear array (ULA), where the updating of eigenvalues
and the threshold setting are avoided. The effectiveness of
the proposed method is verified through numerical examples,
and simulation results show that the proposed method has
good detection performance to track the number of suddenly
appearing/disappearing incident signals or that of closely-
spaced signals with time-varying directions.

1. INTRODUCTION

In sensor array processing, the problem of detecting the num-
ber of incident signals is closely linked with that of estimat-
ing their directions of arrival (DOAs) from the noisy mea-
surements, and it is a key step in high-resolution subspace-
based direction estimators. Furthermore, most of these direc-
tion estimators usually assume that the number of incident
signals (i.e., the dimension of signal subspace or the effec-
tive rank of array covariance matrix) is fixed and known a
priori. However, the number of incident signals is often un-
known and/or time-varying in particularly nonstationary en-
vironment, and hence the performance of direction estima-
tion can be adversely affected if the number of signals is not
determined correctly. Therefore estimating the number of in-
coming signals accurately and tracking its possible changes
in an on-line way is a critical requirement for any practical
DOA estimation and tracking system.

The well-known batch methods for detection of the num-
ber of incident signals are eigenstructure-based nonparamet-
ric schemes because of their relatively computational sim-
plicity without the need to estimate direction parameters,
and the most popular one is the eigenvalue-based Akaike in-
formation criterion (AIC) and minimum description length
(MDL) criterion [2], where the “multiplicity” of the smallest
eigenvalues of a covariance matrix is utilized, and any sub-
jective setting of a threshold required in conventional hypoth-
esis testing is not required. Unfortunately, the computational
intensiveness and time consumption of eigendecomposition
will obstruct their implementation in an on-line manner (e.g.,
see [1], [7] and references therein).

Recently on-line detection/tracking problem has been
considered by taking advantages (such as estimated eigen-
valus or matrix structure) of some subspace trackers, which
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were mainly developed to facilitate adaptive implementa-
tions of spectral estimation or direction estimation. Firstly,
by comparing the estimated eigenvalues obtained by the QR
decomposition based Bauer’s (bi-)iteration [3], [4] or spher-
ical subspace tracker (e.g., [S]-[7]) with an estimated noise
floor level, adaptive rank estimators were proposed to de-
termine the number of signals [3], [4], [7], [8], but these
eigenvalue-threshold comparing methods suffer from the dis-
advantage of setting an appropriate threshold factor. By us-
ing the estimated eigenvalues provided by the (bi-)Lanczos
based fast subspace decomposition (FSD), the FSD-based
modified likelihood ratio test and FSD-MDL schemes were
developed [9], [10]. By combing the MDL criterion [2] with
the projection approximation subspace tracking with defla-
tion (PASTd) [11] and the four-level signal averaged (SA4)
spherical subspace tracker [12], the PASTd-MDL and SA4-
MDL were also proposed [13], [12]. Next, since the ma-
trix structure provided by the QR decomposition [14] or
URV/ULV decomposition [15], [16] of the data matrix and
its variants [29] is utilizable in subspace tracking, some rank
revealing based methods were suggested to track the number
of signals [15], [17]-[19], [29], yet they usually require pre-
specified tolerances based on a priori knowledge of noise
variance and/or the estimation of condition number. Addi-
tionally, a condition number based on-line detection scheme
[20] and an invariant subspace updating (ISU) based para-
metric method with threshold comparison [28] were also pre-
sented, repectively. Unfortunately, most of these on-line de-
tection methods perform poorly, when the incident signals
are coherent (i.e., fully correlated) such as in multipath prop-
agation environment, which is often encountered in mobile
communication systems caused by various reflections.

On the other hand, some batch and nonparametric de-
tection methods without eigendecomposition were studied
[21]-[24]. The QR-based method [21] is applicable to co-
herent signals, nevertheless it needs a priori knowledge of
true noise variance and subjective assessment, and its perfor-
mance generally degrades in difficult scenarios. The mod-
ified MDL methods based on the QR with column pivot-
ing and rank revealing QR decomposition (RRQR) are suit-
able for non-coherent signals [22], [23], while the supervised
training approach [24] is restricted for no more than two in-
coherent/coherent signals without restrictive hypotheses and
implemented with neural network.

Therefore the purpose of this paper is to investigate the
on-line detection of the number of narrowband signals re-
gardless of their statistical correlations. Based on the pre-
viously proposed batch and nonparametric method for esti-
mating the number of signals without eigendecomposition
(MENSE) for the coherent signals in stationary environment
[25], a new QR-based adaptive detection algorithm is pro-
posed for incident signals impinging on a uniform linear ar-
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ray (ULA), where the updating of eigenvalues and the thresh-
old setting are not needed. The effectiveness of the pro-
posed method is verified through numerical examples, and
simulation results show that the proposed method has good
detection performance to track the number of suddenly ap-
pearing/disappearing signals or that of the signals with time-
varying directions which even cross in their trajectories.

2. DATA MODEL AND BASIC ASSUMPTIONS

Consider a ULA of M identical and omnidirectional sensors
with adjacent spacing d and assume that p (p < M/2) nar-
rowband signals {s;(¢)} are in the far-field and impinge from
the directions {6;(t)}. The received signal y,,(¢) at the mth
sensor is given by

P
Z eIwo(m=1)7(05(t)) 4 4, (t)

=1

= by, (0)s(1) + wm (1) (1
Where bm(o) — [ejwo(m_l) (61( ))’ejwﬂ(m_l)T(GQ(t)),...7

eI (m=DTO T, s(t) = [51(t),52(t), -, 5p(t)]", while
Wy, (t) is the additive noise, wo = 2mfy, 7(0;(t)) =
(d/c)sinf;(t), and ¢ and fy are the propagation speed and
center frequency. Then we have a compact data model

y(t) = A(6(1))s(t) +w(t) 2

1 (). y2(8), - ym (D] w(t) = [wi(),

wa(t), - ,war(t)]T, and A(A(t)) is the array response

matrix given by A(6(t)) = [b7 (6),b1(9), - .b% (6)]"

= [alt1(1)). - ,a(8,(1)] with a(6;(t)) = [L,e/07C:t),
-, edwo(M=1)7(0;(t) T

Here the incident signals {s;(k)} are temporally com-
plex white Gaussian random processes with zero-mean and
variance given by E{s;(k)s;(t)} = ¢s,;0x and E{s;(k)
si(t)} =0, and they are mutually uncorrelated or corre-
lated (even coherent), i.e., the rank of source signal co-
variance matrix C is given by 1 < rank(Cj) < p, where
C. = E{s(t)s" (t)}. The additive noises {w,,(t)} are tem-
porally and spatially complex white Gaussian random pro-
cesses with zero-mean and the covariance matrix given by
E{w, (k)w; (t)} = 0200k and E{wy,,(k)w;(t)} = 0,
where E{-}, (-)*, and d,,, denote the expectation, complex
conjugate, and Kronecker delta, and they are uncorrelated
with the incident signals.

Furthermore in order to adaptively estimate and track
the number of incident signals even with time-varying direc-
tions, we assume that 0;(t) is slowly time-varying (relative
to the sampling rate 1/7; [20]) so that 6;(t) ~ 6;(nT) for
tenT,(n+1)T) and n =0,1,---, while N snapshots of
array data are available over an interval 7" of parameter up-
dating, i.e., T'= NTj, and N is called as the window size
herein. Hence the on-line number detection is formulated
as the estimating the number of signals p at the instant n
for n =0,1,--- from N snapshots of {y(k)} measured at
k=nN,nN+1,---,(n+1)N—1.

where y(t) =

3. ON-LINE ALGORITHM FOR NUMBER
DETECTION

3.1 Principle of QR-Based Number Detection in Batch
Manner

By exploiting the array geometry and its shift invariance
property with subarray averaging, we proposed a QR-based

MENSE detection for the coherent signals in stationary envi-
ronment [25]. In order to gain the insights into the adaptive
detection algorithm, we firstly extend the MENSE to the gen-
eral case of incident signals in a unified formwork. Here the
directions are assumed to be distinct and time invariant, i.e.
0;(k) = 6;, and A(6(k)) is denoted as A for simplicity.

By dividing the full array into L overlapping subarrays
with p sensors in the forward and backward directions, where
L =M —p+1and p > p (see the choice of subarray size p
in Section 3.2), then for [ = 1,2,--- | L, the signal vectors of
the [th forward/backward subarray are given by

yfl(k) = [w(k),yi41(k), ’pr,l(k)]T
=AD" 's(k)+wp(k) 3)
Yo (k) = [ypr—141(k), ynr—1(k), - »yL—l+1(/€)]H
=AD" M=Dg* (k) +wy (k) 4)

where w (k) = [wi(k), w1 (k) wiyp1 (k)] wy (k)
= [wM_l+1(k),wM_l(k)7 v ,’LUL_l+1(]€)]H, Aj is the sub-
matrix of A consisting of the first p rows, D = diag(bx(6)),
and diag(-) denotes the diagonal operation which extracts
the diagonal of a matrix as a vector or constructs a diago-
nal matrix with the elements of a vector. Then by defin-
ing four correlation vectors between the signal vectors in
(3) and (4) and the received signals y1 (k) or yu (k) as
pr = E{ynk)yy (k)}, @5 = E{lyn(k)yi(k)}, ep =
E{y1(k)yy (k)}, and @y = E{yns (k)yy, (k)}, we can form
four Hankel correlation matrices @, ® ¢, ®;, and ®,, to al-
leviate the noise influence and to provide a basis for number
detection

=[p 1,052, aSOfoﬂT &)
= [@fo, @3 @) (6)
= [@p1,Pp2s s Por—1)" )
‘I’b = [@v2: Po3 - Por] - ®

Lemma: If the array is partitioned properly so that the
subarray size and the number of incident signals satisfy the
inequality p < p < M — p, the ranks of four Hankel correla-
tion matrices @, P f> ®p, and &, will equal the number of
signals regardless of the statistical correlations between the
incident signals.

Proof: By applying the facts that b,,,(8) = D™ b (6),
s"(k)D = by (0)S(k), and E{S(k)s"(k)b,,(0)} =
diag(Csb},(0)), where S(k) = diag(s(k)), from (3)-(8),
under the assumptions on data model, we can obtain after
some manipulations

®; = E{Y ;(k)ys (k)} = AE{S(k)s" (k)b (0)} AT
= Adiag(C.bi,(0) AT ©
5 = E{Y s(k)yi(k)} = ADdiag(C,b;(0))A]  (10)

@, = E{Yy(k)y1(k)}

= AD~ M (diag(Cb; (0)))" AT (11
@, = E{Y ,(k)ym(k)}

= AD~ M7 (diag(C.b},(0)))" AT (12)

where Y ¢(k) = [yfl(k)ayf2(k)v"' vnyfl(k)]T* Yf(k)
= [ny(k)»yf?,(k)a"' 7ny(k)]T’ Yo (k) = [yp1 (B), ypa(k),
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7QbL71(k)]T’ Yu(k) = [Yp2(k),yps(k), -, ybL(k)}T’
and A is the submatrix of A consisting of its first M — p
rows.

Clearly the ranks of two Vandermonde matrices A
and A, are given by rank(A) = min(M — p,p) = p and
rank(A1) =min(p,p) =piff p <p< M —p, while the p x p
diagonal matrices diag(Csb},(0)), diag(Csbi(0)), and D
have full rank no matter if the incident signals are coherent
or not in view of the facts that C's # O,,x, and b;(0) # 0 1.
Hence from (9)-(12), we find that the ranks of matrices ®,
®;, ®;, and P4, equal the number of signals even though the
incident signals are coherent. [ ]

Therefore when p < p < M — p, it is possible to esti-
mate the number of incident signals from the ranks of the
(M —p) x p Hankel correlation matrices ®, ®, ®;, and
@, in spite of the statistical correlations between the inci-
dent signals, which can cause the source signal covariance
matrix C'; to be rank-deficient sometimes and consequently
complicates detection problem. Furthermore, these Hankel
correlation matrices are insensitive to the additive noise even
with the spatially inhomogenous noise model.

Remark: 1t is worthy to note that the Hankel cor-
relation matrices ®;, ®;, P, and P, are derived in
(9)-(12) irrespective of the statistical correlations between
the incident signals. By introducing the source sig-
nal covariance matrix Cy = cslﬁﬂH (for coherent case)
or C, = diag([cs;;Coys- 5 Cs,)7) (for uncorrelated case)
into (9)-(12), the expressions of such matrices in the
MENSE [25] can be obtained straightforwardly, where 3 =
(1,82, ,Bp]T, B; is the complex attenuation coefficient of
s; (k) with respect to s; (k) with 8; # 0 and 8; = 1. 0

Then by defining an (M —p) x 4p correlation matrix ® as
® =[®;, P, Py, Py, after some algebraic manipulations,
we obtain an auto-product ¥ of matrix ® as

U =037 = AFFHAY (13)
where
F = [diag(Cbj, (0)) AT, Ddiag(C by (0)) AT,
D~ (diag(C b7 (6))) AT,
DM (diag(C.b)y (6))) AT - (14)
Clearly the number of signals p equals the rank of ¥ irre-
spective of the signal coherency iff the detectability condi-

tion that p < p < M — p is satisfied and is revealed in the
rank of the QR upper-trapezoidal factor R of W given by
¥ =QR

Ry, Ry o
= 15
Q O(M—ﬁ—p)x(M—ﬁ) }M—ﬁ—p (13)
where Q is the (M — p) x (M — p) unitary matrix, Ry is
the p X p upper-triangular and nonsingular matrix, and R,
is the p x (M — p— p) matrix with non-zero elements.

Proof: Omitted (see [25] for reference). [ |

3.2 On-Line Algorithm for Number Detection

Now based on the aforementioned QR-based number detec-
tion, we consider the on-line algorithm to estimate the num-
ber of signals p at the instant n for n = 0,1,--- from N
snapshots of {y(k)} measured at k = nN,nN +1,--- ,(n+
1N -1.

From (9)-(12), we can get the instantaneous Hankel cor-
relation matrices at the instant n as

Yy (k)yn (k) (16)
k=nN
(n+1)N-1

Bn)= > Yikmk) an

i
3
2

B = > Yalkmk) (1)

Yy (k)yn (k). (19)

Then by performing the QR decomposition with column piv-

oting to the instantaneous estimate ¥ (n) of matrix ¥ in (13)
at the instant n, we get

¥ (n)TT = Q(n)R(n)
— O Rii(n), 1:%12(71) Ip
- e O(Mfﬁfp)xm Ry;(n) M —p—p (20)

where ITis an (M —p) x (M — p) permutation matrix, which
is introduced to remedy the effect of additive noise and
that of finite window size, and which can be determined by
the column index maximum-difference bisection rule based
scheme (called QRPP) [22], [26]. Then by introducing an
auxiliary quantity {(n,¢) in terms of the non-zero elements

of the ith row of QR factor R(n) as

M—p
(i)=Y |Fim|+e, fori=1,2,- ,M—-p (1)

m=i
we can define a ratio criterion £(n,%) as

¢(n,i)

f(nai):m,

fori=1,2,-- . M—p—1 (22)

where € is an arbitrary and positive small constant (e.g.,
e = 10719 for avoiding the possibly undetermined ratio of
0/0 in (22). Thus the number of incident signals at the
instant n is determined as the value of the running index
i€{1,2,---,M — p— 1} for which the criterion £(n,i) is
maximized, i.e.,

p(n) = argmax §(n,1). (23)

Therefore the implementation of the proposed on-line de-
tection algorithm is summarized as:

Step 1: Set the subarray size to p = | M/2], which satis-
fies the condition that pyax < p= |M/2] < M — pmax,
where prax = [M/2] — 1, while [z] or [z] denotes the
smallest integer not less than z or the largest integer not
greater than x, respectively.

Step 2: Calculate the instantaneous correlation vector ¢(n)
between y(k) and v}, (k) and those of @(n) between
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Figure 1: Adaptive estimation performance for the coherent
signals with constant directions: (a) scenario and (b) esti-
mated number of signals (dotted line: true value) in Example
1.

y(k) and yj (k) by using N snapshots of {y(k)} mea-
sured at k =nN,nN+1,--- ,(n+1)N —1as

(n+1)N—1

P = > wkwLk) o9
k=nN
1 (n+1)N-1
en) =+ y(k)yi (k) (25)
k=nN
where @(n) = [¢1n(n), Canr(n),- - ;éarar(n)]”, and
@(n) =[é11(n),éa1(n), -, éarn (n)]".

Step 3: Form the instantaneous Hankel correlation matrices
& ;(n), ®;(n), y(n), and ®;(n) at the instant n from

@(n) and {p(n) obtained above without the use of ;1 (n)
and é]w]\/[ (n) .

Step 4: Form the instantaneous correlation matrix @(n) as

B(n) = [®;(n), ®;(n), y(n), By(n)].  (26)

Step 5: Calculate the auto-product W (n) of ®(n) as (13)
and perform its QR decomposition with the permutation
matrix IT as (20).

Step 6: Calculate the ratio criterion &(n,i) as (22) and
determine the number of incident signals by using (23).

4. NUMERICAL EXAMPLES

The ULA with M = 10 sensors is separated by a half-
wavelength, and the signal-to-noise ratio (SNR) is defined as
the ratio of the power of incident signal c,, to that of the ad-
ditive noise o at each sensor, i.e., SNR = ¢, /0. The spa-
tial smoothing (SS) and forward-backward SS (FBSS) based
MDL methods [30], [2] are also carried out for comparison,

where the instantaneous array covariance matrix at the in-

stant n is calculated from the N snapshots {y(k) ,(Cn:tlllg,NA

and the its eigenvalue decomposition (EVD) is performed.
The simulation results shown below are obtained by the
ensemble-averaged based on 1000 independent trials.

(a) Direction Trajectories of Inicident Signals
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Figure 2: Tracking performance for the coherent time-
varying signals: (a) scenario and (b) estimated number of
signals (dotted line: true value) in Example 2.

Example 1—Adaptive Detection for Coherent Signals
with Constant Directions: Two coherent signals with equal
power (cs; = 1) arriving from 6; = 5° and 6, = 12°, and
their SNR is set at 2.5dB. The number of snapshots during
the interval of parameter updating (i.e., window size) is set
at N =T/T, = 10. As shown in Fig. 1, the proposed on-
line detection algorithm with QRPP can estimate the number
of signals adaptively and accurately, and it outperforms that
with the ordinary SS- and FBSS-based MDL methods, where
the effects of the additive noise and finite window size N are
alleviated efficiently.

Example 2—Tracking for Closely-Spaced and Time-
Varying Coherent Signals: Two coherent signals initially
located at 10° and 30°, and their directions change linearly
and cross at n = 100. The other simulation parameters are
similar to those of Example 1. As observed from (13), when
two incident signals become close, the ranks of A and A;
(i.e., A(6(n))) will begin to collapse and result in the rank-
deficiency of W, consequently only one signal will be de-
tected. When the signals become close and 6° apart, the rank
of ¥(n) (i.e., A(6(n))) first begins to collapse, the proposed
algorithm with QRPP fails to estimate the number of two co-
herent signals as one, but it can track the number of signals
accurately when the angular separation becomes larger than
8°. Furthermore as shown in Fig. 2, it performs well than the
proposed ones with SS- and FBSS-based methods.

Example 3—Tracking for Appearing and Disappearing
Coherent Signals:  There are three coherent signals imp-
ing on the array from 6;(n), 62(n), and 63(n), where so(n)
appears at n = 30, and it disappears during the interval be-
tween n = 80 and n = 120 and from n = 160, while s3(n)
disappears from n = 80 and n = 120. The other simulation
conditions are the same as those in Example 1. As shown
Fig. 3, the proposed on-line algorithm with QRPP has bet-
ter tracking performance than the SS- and FBSS-based MDL
methods even with the EVD, and it can estimate the decreas-
ing and increasing number of incident signals accurately and
immediately.

S. CONCLUSION

In this paper, a new QR-based on-line algorithm was pro-
posed for estimating the number of coherent and/or incoher-
ent narrowband signals impinging on a ULA, where the up-
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Figure 3: Tracking performance for the coherent appear-
ing and disappearing signals: (a) scenario and (b) estimated
number of signals (dotted line: true value) in Example 3.

dating of eigenvalue and threshold setting are not needed.
The proposed algorithm has good detection performance to
track the number of suddenly appearing/disappearing inci-
dent signals or that of incoming signals with time-varying
directions which even cross in their trajectories.
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