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ABSTRACT
This paper presents a method for speech time scale modification.
Voiced speech is pseudo-periodic, allowing time scale modification
by the repetition or removal of cycles as necessary. However, in
the case of unvoiced speech and at the boundaries of voiced speech,
no such periodicity exists so the speech should not be modified.
To address this issue, the proposed approach is novel in its use of
the DYPSA algorithm to derive speech periodicity from glottal clo-
sure instants (GCIs), followed by a Gaussian Mixture model-based
voiced/unvoiced/silence (VUS) classifier. A listening test based on
ITU-T P800 has been conducted and has shown that, by employing
VUS detection, the average mean opinion score of the perceptual
quality of processed speech exceeds that of a method without VUS
detection by 0.61 over a range of modification factors. Results are
presented as a function of modification factor for normal and fast
original talking rate. Reliable time scale modification of high audio
quality enables many applications, such as time scale compression
for fast scanning of recorded voicemail messages, slowing talking
rate for improved intelligibility in forensics and lip synchronization
in motion video.

1. INTRODUCTION

Speech time scale modification is a process which alters the length
of a segment of speech without significantly affecting its pitch or
formant structure. It has many uses, including time scale compres-
sion for fast scanning of recorded voicemail messages [1] and time
scale expansion for improving the intelligibility of fast or degraded
speech in forensic applications. A combination of compression and
expansion may also find uses in the synchronization of audio to lip
movements in motion video. Real-world applications of time scale
modification have, however, been limited due to the presence of un-
wanted artefacts in existing approaches. This paper presents a new
approach which reduces many common artefacts and provides fast
and perceptually superior results.

During voiced speech, the pseudo-periodicity of the waveform
naturally lends itself to time scale modification as complete lar-
ynx cycles may be removed or repeated depending upon whether
a compression or expansion of signal duration is desired. Provid-
ing that the periods are accurately known and cycles are concate-
nated in such a way that pitch periods are faithfully reproduced,
good time scale modification can be achieved. However, during pe-
riods of unvoiced speech, voiced fricatives, plosives or boundaries
of voiced speech, no such periodicity exists, though most algorithms
still apply uniform time scale modification to the entire speech sig-
nal. These segments will be referred to hereon as unvoiced and
transition (UT) segments. The resulting artefacts in UT segments,
caused by algorithms such as the following, diminish the quality of
the processed speech.

Existing approaches for concatenating periods of voiced speech
for time scale/pitch modification include the PSOLA method [2]
and specifically time-domain PSOLA (TD-PSOLA) which per-
forms well provided a) pitch periods are accurately known and
b) high quality time scale (but not pitch) modification is required.
Other approaches include sinusoidal-based [3], LP residual-based
(LP-PSOLA) [4, 5], waveform similarity-based (WSOLA) [6] and

phase vocoders [7], which address the cases when one or more of
these constraints are unfeasible, at the cost of added complexity.

More recent approaches address the issue of UT segments [8, 9,
10, 11, 12]. In the literature, effort has been made to apply different
levels of duration modification for different segments with positive
results but little work has been done to optimize these parameters.
The studies generally conclude that the most perceptually signifi-
cant artefacts are those arising from the repetition of UT segments,
for which the fast and accurate detection is key in the proposed al-
gorithm. The approach also differs in the use of the DYPSA algo-
rithm [13] to quickly and reliably find glottal closure instants (GCIs)
to use as pitch markers.

The strategy is to address the problem of modification
during segments of little or no periodicity by employing a
voiced/unvoiced/silence (VUS) detector, from which UT segments
are derived. It assumes that the duration of most UT segments is in-
dependent of speech rate [14, 10] and does not apply modification
to them. During voiced segments, DYPSA provides GCIs which
are used as pitch markers. During silence, the algorithm places
pseudo-pitch markers every 10 ms. Cycles are then concatenated
using PSOLA, ensuring that pitch periods are faithfully reproduced
using the approach in [5]. The result is a practical, fast and reli-
able method for time scale modification that is novel in a) the use of
DYPSA to find pitch markers and b) the use of a Gaussian Mixture-
based classifier to find UTs. Subjective testing has shown that the
proposed method gives significantly greater mean opinion scores
than an equivalent method which performs uniform processing on
the entire speech signal.

This paper is organised as follows: Section 2 formulates the
problem with a set of examples. Sections 3 and 4 describe the
DYPSA algorithm and the VUS detector respectively. Results and
discussion of subjective tests are presented in Section 5 followed by
conclusions in Section 6.

2. MOTIVATION FOR THE PROPOSED APPROACH

Compression or expansion of speech time scale involves removing
or repeating cycles as required, as shown in Fig. 1. Pitch markers
must be pitch-synchronous, but by identifying GCIs, it is guaran-
teed that in addition to being pitch-synchronous, crossfades take
place where there is low speech energy. Such an approach can
give good time scale modification during periods of voiced speech
providing the GCIs are accurate. The DYPSA algorithm ensures
GCIs are accurately estimated, eliminating the ‘phasiness’ property
which often accompanies poor GCI estimation in time scale modifi-
cation [7]. This is a highly important case for forensic applications
where speech is often slowed down in order to ease the task of tran-
scription.

However, Fig. 2 shows that by using this approach with pseudo
pitch periods placed every 10 ms during unvoiced sounds, the wave-
form can acquire periodic components it did not originally pos-
sess when the time scale is stretched. This gives a very unnatural-
sounding result which diminishes the overall quality of the pro-
cessed speech. In the case of a fast-spoken sentence which is to
be slowed down, there is a greater ratio of the duration of un-
voiced to the duration of voiced speech, as the duration of many
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Figure 1: Concatenation of pitch periods. Periodicity is identified
(in this case at the instants of glottal closure) and individual periods
are multiplied with a Hamming window. Periods are repeated or
removed as necessary and then aligned and normalised to form a
new synthesised signal with modified time scale. The use of GCIs
as pitch markers ensures that crossfades take place during regions
of low speech energy.

unvoiced sounds has been found to be largely independent of talk-
ing rate [14, 10]. The aforementioned artefacts will therefore be
worse in the case of time scale expansion on fast-spoken speech.

When compressing the time scale of a speech signal, a uniform
approach can cause short (but important) sections of speech to be
removed altogether and significantly impair intelligibility. Fig. 3
gives an example where a plosive is lost.

These problems may be addressed if UT segments are isolated
and left unchanged, allowing only voiced and silent periods to be
modified. The assumption that many unvoiced sounds are either
weakly proportional to talking rate or are entirely independent, is
mentioned in [14, 10] and backed up by subjective testing in Sec-
tion 5.

3. THE DYPSA ALGORITHM

The main features of the Dynamic Programming Phase Slope Algo-
rithm (DYPSA) are now reviewed. It consists of three main com-
ponents: the phase slope function, phase slope projection, and dy-
namic programming. These components are defined as follows.

Phase-slope function [15] – defined as the average slope of the
unwrapped phase spectrum of the short time Fourier transform of
the prediction residual. GCI candidates are selected based on the
positive-going zero crossings of the phase-slope function.

Phase-slope projection – introduced to generate GCI candidates
when a local minimum is followed by a local maximum without
crossing a zero. The midpoint between these is identified and pro-
jected onto the time axis with unit slope. In this way, GCIs whose
positive going slope does not cross the zero point (those missed by
the phase-slope function) are identified.

Dynamic Programming – uses known characteristics of voiced
speech and forms a cost function to select a subset of the GCI can-
didates which are most likely to correspond to the true ones. The
subset of candidates is selected according to the minimisation prob-
lem defined as

min
Ω

|Ω|

∑
r=1

λ
T cΩ(r), (1)

where Ω is a subset with GCIs of size |Ω| selected from all GCI
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Figure 2: The effect of treating unvoiced sounds as periodic in time
expansion. Speech signal (a) is an utterance of the phoneme/tS/
(containing both impulsive events and turbulent noise), with pseudo
pitch markers placed every 10 ms. A time expansion of four times
is shown in (b) which contains many additional harmonic compo-
nents.

candidates, λ = [λA λP λJ λF λS]T = [0.8 0.5 0.4 0.3 0.1]T is a
vector of weighting factors with the values taken here as in [16] and
c(r) = [cA(r) cP(r) cJ(r) cF (r) cS(r)]T is a vector of cost elements
evaluated at the rth GCI of the subset. The cost vector elements are:
• Speech waveform similarity, cA(r), between neighbouring can-

didates, where candidates not correlated with the previous can-
didate are penalised.

• Pitch deviation, cP(r), between the current and the previous two
candidates, where candidates with large deviation are penalised.

• Projected candidate cost, cJ(r), for the candidates from the
phase-slope projection, which often arise from erroneous peaks.

• Normalised energy, cF (r), which penalises candidates that do
not correspond to high energy in the speech signal.

• Ideal phase-slope function deviation, cS(r), where candidates
arising from zero-crossings with gradients close to unity are
favoured.
It can be seen from the dynamic programming criteria that

DYPSA is robust to spurious peaks in the prediction residual, pro-
viding a GCI detection rate of ∼ 96% during voiced speech. The
use of PSOLA in conjunction with DYPSA – which relies heavily
on waveform similarity – is loosely related to the WSOLA tech-
nique [6], with the notable exception that DYPSA operates on a set
of candidates derived from the LPC residual with the Group Delay
method.

4. SPEECH SEGMENTATION

The purpose of the VUS detector is to segment a speech signal into
three classes: voiced, unvoiced and silent. During voiced segments,
the DYPSA algorithm [13] is used for GCI detection. During si-
lence, pseudo pitch markers are placed every 10 ms. Time scale
modification may then be applied to the marked voiced and silent
segments; UT regions are left unprocessed. VUS detection and the
derivation of UT segments are described in the remainder of this
section.

4.1 VUS Probabilities
VUS detection is based on feature vectors derived from 20 ms
frames of speech. Each class is modelled by a multivariate full co-
variance Gaussian distribution, whose parameters are derived from
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Figure 3: The effect of treating unvoiced sounds as periodic in time
compression. Speech signal (a) is an utterance of the word /blu/
(blue), with pseudo pitch periods marked ‘×’ and GCIs marked ‘◦’.
A time compression of four times is shown in (b) which sounds
closer to /lu/.

labelled training data. Once trained, the VUS detector is applied to
a set of test data for the forthcoming subjective tests.

The five feature vector coefficients are the well-known param-
eters defined in [17]. Zero crossing rate indicates how the energy
of the speech signal is concentrated in frequency. Voiced segments
of speech have a low zero crossing rate. This measure varies sig-
nificantly for silent periods because of its dependence on ambient
noise. Normalized Energy is greatest during voiced segments of
speech. Normalized autocorrelation coefficient at 0.1s delay is a
strong indicator of the spectral whiteness of unvoiced speech whose
value is close to zero. The periodicity of voiced speech gives a value
close to one. Mean spectral slope, estimated by the first covariance
LPC coefficient, is much steeper for voiced speech due to the nature
of the glottal volume velocity exciting the vocal tract. Energy in LP
residual is a good indicator of the strength of formants present in
voiced segments of the speech signal. The five coefficients are then
augmented with their delta and delta-delta coefficients to produce a
15 dimensional feature vector xi for frame i [18].

Speech utterances for model training were recorded by three
talkers, of combined duration 100 s, under the same conditions as
those used in the experiments presented in Section 5. They were
labelled as {V,U,S} by hand then excluded from use in the subjec-
tive test set. The maximum likelihood estimate of the mean vector
mω and the covariance matrix Σω was determined for each class
ω ∈ {V,U,S} and the relative frequency of each class was used to
determine the prior probabilities P{ω}. The probability of a feature
vector xi belonging to class ω is determined using Bayes’s rule,

P{ω|xi}=
P{ω} fX (xi|ω)

fX (xi)
(2)

where fX (xi|ω) is the class likelihood (determined by mω and Σω )
and the total likelihood is estimated using

fX (xi) = ∑
ω

P{ω} fX (xi|ω). (3)

The classification of frame i may only depend on xi in which case
it is sufficient to use the numerator of (2), where the class is de-
termined as max

ω
P{ω} fX (xi|ω). When classification is a time-

dependent process, as described in the following subsection, it is
necessary to base the decision on P{ω|xi}.
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Figure 4: Normalised probabilities for ω ∈ {V,U,S}. Solid: voiced,
dashed: unvoiced, dotted: silence.

4.2 Determination of UT, Voiced and Silent Segments
The VUS detector provides a set of probabilities for voiced, un-
voiced and silence as shown in Fig. 4. Voiced segments, V (n),
are identified by applying a Schmitt Trigger operator S+ to the
voiced probability, S+(P{V |xi}). Transition segments, T (n), are
derived by identifying the boundaries of V (n) and flagging a seg-
ment 10 ms before and after the boundary. Unvoiced segments,
U(n), are identified by applying a Schmitt Trigger to the unvoiced
probability, S+(P{U |xi}) (with upper and lower thresholds empir-
ically set at {0.25,0.75}) and extending in time scale by 2 ms at
the boundaries. The UT segment is the union of U(n) and T (n),
UT (n) = U(n)∪ T (n) and all remaining segments are flagged as
silence, S(n).

5. SUBJECTIVE TESTING

A subjective test was performed to determine the mean opinions of
the speech quality produced by two time scale modification algo-
rithms. Both algorithms applied concatenative synthesis directly
on speech recordings, using GCIs derived by the DYPSA algo-
rithm. Algorithm 1 performed uniform time scale modification on
the entire signal and Algorithm 2 is our proposed algorithm which
uses UT detection to perform time scale modification during voiced
speech and silence only.

The recording apparatus comprised an AKG C480 microphone
connected to an RME Fireface 800 audio interface. Subjective test-
ing samples were played back through the same interface connected
to a pair of Sennheiser HD650 headphones.

Three talkers (two male, one female) were placed in an ane-
choic chamber and recorded speaking five phonetically balanced
sentences at what they considered to be a ‘normal’ speaking rate
and a ‘fast’ speaking rate (approximately 0.5-0.75 the duration of
normal). The texts were taken from the APLAWD and TIMIT
databases [19, 20]. The recorded speech was free from background
noise, reverberation or any significant distortion.

An ITU-T P800 [21] double-blind controlled test was employed
where 30 test subjects were each played 60 random combinations of
talker {1-3}, sentence {1-5}, talking rate {normal, fast}, algorithm
[no UT detection, UT detection] and time scale modification fac-
tor {0.25, 0.5,. . . , 2.75, 3}. A modification factor of 1 implies no
processing was undertaken and the subjects were not aware of what
samples they were listening to, nor were they aware of how many
algorithms had been employed. Sentences recorded ‘fast’ only had
time-scale expansion, so that the modification factor was always
greater than 1. The test subjects were asked to give overall opinion
scores in the range {1-5}, paying attention to intelligibility, prosody
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Figure 5: Mean Opinion Scores as a function of modification factor
for a normal original talking rate.
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Figure 6: Confidence intervals of Mean Opinion Scores as a func-
tion of modification factor for a normal original talking rate. Boxes
show the median, upper and lower quartiles, whiskers the most ex-
treme values within 1.5 times the interquartile range and + the out-
liers.

and artefacts. Calibrated examples were given before the test was
undertaken, defined as: 1=Unsatisfactory, 2=Poor, 3=Fair, 4=Good,
5=Excellent.

5.1 Results and Discussion
Figs. 5 and 7 show Mean Opinion Scores (MOSs) as a function of
time scale factor with their corresponding confidence intervals in
Figs. 6 and 8. Mean MOS scores are shown in table 1.

The results show that UT detection is preferred by the listeners,
particularly at larger modification factors. However, at the lowest
increments, 0.75 and 1.25, there may be evidence to suggest that
UT detection is unnecessary. Informal listening has shown that al-
though artefacts are reduced in the UT case, the flow is slightly
interrupted so there may be a preference for smooth flow over arte-
facts for low levels of modification.

The greatest difference in opinions occurs at a factor of 0.25 on
normal speech, where some subjects described the non-UT method
as ‘garbled’ and the UT as ‘unnatural but intelligible’ during in-
formal listenings. This would suggest that in the case of extreme
speeding up, a listener prefers to preserve intelligibility at the cost
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Figure 7: Mean Opinion Scores as a function of modification factor
for a fast original talking rate.
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Figure 8: Confidence intervals of Mean Opinion Scores as a func-
tion of modification factor for a fast original talking rate. Boxes
show the median, upper and lower quartiles, whiskers the most ex-
treme values within 1.5 times the interquartile range and + the out-
liers.

of impairing natural flow.
The control samples show the highest MOS, though it is re-

duced by about 0.5 for ‘fast’ talking rate compared with ‘normal’;
similar scores are seen for normal speech modified by 0.5-0.75.
This is evidence that intelligibility is preferred over the presence of
artefacts at large deviations from normal; if this were not the case
then the MOS for unmodified speech would be similar regardless of
the original talking rate.

Now that it has been established that segmented time scale mod-
ification is a worthwhile pursuit, a possible extension of this method
is the discrimination between different types of speech in addition to
UT detection, then applying different amounts of stretching or com-
pression based upon training data. This is mentioned in [8] where
vowels are detected as a subset of voiced speech, but other cases
such as inter-phoneme and inter-word pauses, stressed phonemes
etc. may also vary differently with talking rate in natural speech.

6. CONCLUSION

Time scale modification is the altering of the length of a speech
segment without changing pitch, prosody or formant structure. A
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Table 1: Mean MOS scores

Normal Fast Mean
Speed Speed Speed

UT detection, µUT 3.5437 3.1792 3.3614
No UT detection, µNUT 2.8985 2.6044 2.7515
µUT −µNUT 0.6452 0.5748 0.6099

method for time scale modification has been proposed that gives
good perceptual quality for a range of modification factors as
demonstrated by subjective testing. The method employs an un-
voiced / transition (UT) detector which ensures that time scale mod-
ification is only applied to silence or voiced segments, avoiding the
artefacts caused by the time scale modification of unvoiced and tran-
sition sounds. GCIs are provided by the DYPSA algorithm as part
of a practical, fast, reliable approach for time scale modification.

The method was tested by MOS testing against the same ap-
proach but excluding the UT detector. The results suggest that UT
detection is preferred, though more so at larger modification fac-
tors. At small modification factors the benefit of UT detection is
less pronounced.

The ability to alter the rate of speech reliably can enable appli-
cations such as time compression for the fast scanning of recorded
messages, expansion for improving intelligibility or a mixture such
as in the case of audio-video synchronization.
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