BLIND IDENTIFICATION OF SPARSE SIMO CHANNELS USING MAXIMUM
A POSTERIORI APPROACH

Abdeldjalil Aissa-El-Bey' and Karim Abed-Meraim?3

nstitut TELECOM; TELECOM Bretagne, SC Department, Brest, France
2University of Sharjah, ECUOS/ECE Department, 27272 Sharjah, UAE
3Institut TELECOM; TELECOM ParisTech, TSI Department, Paris, France

ABSTRACT

In this paper, we are interested in blind identification
of sparse single-input multiple-output (SIMO) systems.
A maximum a posteriori approach is considered using
generalized Laplacian distribution for the channel coef-
ficients. This leads to a cost function given by the deter-
ministic maximum likelihood (ML) criterion penalized
by ‘a sparsity measure’ term expressed by the £, norm
of the channel coefficient vector. A simple but efficient
optimization algorithm using gradient technique with
optimal step-size is proposed. The simulations show that
the proposed method outperforms the ML technique in
terms of estimation error and is robust against channel
order overestimation errors.

1. INTRODUCTION

Blind system identification (BSI) is a fundamental
signal processing technology aimed at retrieving a sys-
tem’s unknown information from its outputs only. This
problem has received a lot of attention in the signal pro-
cessing literature and a plethora of methods and tech-
niques have been proposed to solve the BSI over the
last two decades [1-3]. Techniques for BSI can generally
be classified into two main classes (i) higher order sta-
tistical (HOS) and (ii) second order statistical (SOS)
methods. Although HOS methods [1] were proposed for
BSI due to the rich information, large number of obser-
vation samples are required. As a result, SOS methods
such as [4] have become more popular. Comparison bet-
ween SOS and HOS methods have been presented in [3].
Unfortunately, these methods have demonstrated their
limitation when channel impulse response is very long
and sparse (e.g. HF communication, echo cancelation,
etc).

Estimation of sparse long channels (i.e. channels with
small number of nonzero coefficients but a large span
of delays) is considered in this paper. Such sparse chan-
nels are encountered in many communication applica-
tions : High-Definition television (HDTV) channels are
hundreds of data symbols long but there are only a few
nonzero taps [5]. Hilly terrain delay profile has a small
number of multipath in the broadband wireless com-
munication [6] and underwater acoustic channels are
also known to be sparse [7]. We propose exploiting the
sparse nature of the channel via a maximum a posteriori
(MAP) approach using a generalized Laplacian distribu-
tion to model the sparse channel taps. As will be shown
in the sequel, the MAP criterion combines the ML cost
function with the ¢, norm constraint (0 < p < 1) of the

channel impulse response, which is considered by many
authors as a good sparsity measure, e.g. [8,9].

In the following section, we discuss the data model that
formulates our problem. Next, we review the determi-
nistic ML method for blind SIMO channel identification
before using it to introduce the MAP solution. In Sec-
tion 5, some simulations are undertaken to validate our
algorithm and illustrate its robustness against channel
overestimation errors and to compare its performance
to other existing BSI techniques.

2. PROBLEM FORMULATION

The problem addressed in this paper is to determine
the sparse impulse response of a SIMO system in a blind
way, i.e. only the observed system outputs are available
and used without assuming knowledge of the specific
input signal.

Consider a mathematical model where the input and the
output are discrete, the system is driven by a single-
input sequence s(n) and yields M output sequences

z1(n),...,xpm(n), and the system has finite impulse
responses (FIR’s) h;(n) # 0, for n = 0,...,L and
t = 1,...,M. Such a system model can be described
as follows :
z1(n) =  s(n)xhi(n) 4+ wi(n)
xa(n) = s(n)xha(n) 4+ wa(n)
(1)
xpm(n) = s(n)xhy(n) + wp(n)

where * denotes linear convolution and w(n) =
[wi(n),...,wy(n)]T is an additive spatial white noise,
i.e. Elw(n)w(n)] = 02I where ()7 and (-)¥ denote
the transpose and the conjugate transpose, respectively
and I is the M x M identity matrix. In vector form,
equation (1) can be expressed as :

L
x(n) = Z h(k)s(n — k) + w(n) , (2)
k=0

where h(z) = Zé:o h(k)z~* is an unknown causal FIR
M x 1 transfer function satisfying h(z) # 0,Vz. Given a
finite set of observation vectors x(1),...,x(T) and ba-
sed on the channel entries co-primness (i.e. h(z) # 0Vz),
the objective here is to estimate the channel coefficients
vector h = [R(0)T,--- ,h(L)T]T up to a scalar constant
(this is an inherent indeterminacy of the blind system
identification problem as shown in [4]).



3. MAXIMUM-LIKELIHOOD APPROACH

The deterministic maximum-likelihood (ML) is a
classical approach applicable to parameter estimation
problems where the probability density function (PDF)
of the available data is known. Assuming that the system
output vector is corrupted by additive white Gaussian
noise vector, the system output vector (i.e. vector given
by the stack of all observation samples) can be written
as

z=Hys+w (3)

and its PDF given by
1 1 9
f(z|h) = mexp —§||$—HMSH2 (4)

where o2 is the variance of each element of w and H s
is a block Sylvester matrix 2] (Hy = [H{, -+, Hi]T
where H; is the Sylvester matrix of the i-th channel).
The ML estimates of H s and s are given by those ar-
guments that maximize the PDF f(x)

(Har ) = arg max f(z|h) (5)

M,

— 1 2
= arg min {|o - Hysllz} ()

where proper constraints on Hj,; and s are imposed.
Note that such ML criterion is equivalent to the least-
squares (LS) criterion, for which the knowledge of the
PDF of x is not necessary. For any given H s, the ML
estimate that minimizes the quadratic function |z —
H 8|3 is known to be

5= (Hme) Mg, (7)

Under the necessary identifiability condition, the matrix
H s is known to have full column rank [10]. Using this
estimate in equation (6) yields

’l/-\(M:argmin{H(IM—'PH)-’BH%} (8)
Hm

where P is the orthogonal projection matrix onto the
range of Hyy, i.e.

Py =Hu (HﬁHM)_l HIT.

Although the minimization in (8) is computationally
much more efficient than that in (6), it is still highly non-
linear. Therefore, the computation of (8) has to be itera-
tive in nature. Many iterative optimization approaches
such as [11,12] can be applied to compute (8). Below,
however, we consider a more elegant technique. Define

Gy = [-H,, H,] (9)

and

gi—| M . (10

where ¢ = 3,..., M and H, is the top-left (T'— L) x T’
submatrix of H,. Then, provided that all channels do
not share a common zero and T > 2L (for M = 2, only
T > L is required), an orthogonal complement matrix
of the generalized Sylvester matrix H s is Gy, i.e.

Pu+Pg=1

where Py and Pg denote the orthogonal projection
matrices onto range G, and H s, respectively. Under
this condition, the minimization of (8) becomes

h =

argmin {| Poar]3} (11)

= arg II}ZII {z" P} (12)
#
= argrr}zin{:BHgM (gﬁgM) gf\{ﬁﬂ} (13)

where h is the vector of all channels impulse responses
and the superscript (-)# denotes a Moore-Penrose pseu-
doinverse operator. The following is a matrix form of
the commutativity property of linear convolution :

gMiB = X]wh (14)
where X s is defined by :

Xy = [Xo, —X/{] (15)
and
X, 1 0
X, 0 -X;
X, = )
0 X, | ~X,
with ¢ =3,..., M and :
z4(L) z4(0)
Xq = : :
xzq(T —1) xq(T —L—1)

Combining (13) with (14) yields

~

#
h = arg min {hHXﬁ (gﬁgM) XMh} (16)

This expression suggests the following two-step ML me-
thod.
~ Step 1 : h, = argmin {thﬁgxMh}
llhl2=1

~ #
— Step 2: h, = argmin {hHXﬁ (gfgc) XMh},
lr2=1
where G, is Gy constructed from h. according to
equations (9) and (10).
The first step comes from (16) by setting the weigh-

ting matrix (gﬁgM) to an identity matrix. It can
be shown that Step 1 of the algorithm yields the exact
estimate of h in the absence of noise (or when the noise
is white and the data length is infinite) and that Step 2
of the algorithm yields the optimum (ML) estimate of

h at a relatively high signal-to-noise ratio (SNR).



4. MAXIMUM A POSTERIORI APPROACH

In this section, we introduce a Maximum a Poste-
riori (MAP) probability approach which estimates the
probability distribution of h as follows

_ J(lh) ()
Parar = argmfx{ff(ﬂh/)f(h’)dh/} {17)
— argmax {f(alh)f(h)} 18)

To approximate the channel distribution in (18), we
adopt the generalized Laplacian distribution model,
which can be mathematically represented as follows :

F(h) = {Qf;r (1 + %)] e exp <— |Zﬂ5> (19)

where 3 > 0 is a scale parameter, 0 < p < 1 and I'(z) =
JoSt7"tetdt, 2 > 0, is the Gamma function.

The new prior distribution gives more weight to values
that are close to zero, thereby encouraging the model
to set many latent variables to (or close to) zero. This
makes it ideal for learning sparse representations.

The combination of equations (18) and (19) leads to the
following objective function :

#
J(h) =2t (656.)" Xk + AlRlL  (20)

where A = 0¢2/8P is a weighting parameter which
controls the trade-off between approximation error and
sparsity. The first term is the ML criterion and the se-
cond term is the penalty term, which minimizes the ¢,
norm of the channel impulse response h. It is well known
that the concavity of this £, norm function yields the
sparse solution [13].

Therefore, the desired solution of h is determined by
minimizing the cost function J(h) under the unit norm
constraint ||hl2 =1 :

h = arg er‘linl {hHXf/[ (gfgc)# Xuh+ )\|h||§} :
o—

(21)
Direct minimization is computationally intensive and
may be even intractable when the channel impulse res-
ponses are long and the number of channels is large.
Here, a two step stochastique gradient technique is pro-
posed to solve this minimization problem efficiently :
Step 1 : Similarly to the previous ML solution, we set

#
the weighting matrix (gﬁ g M) to the identity. Conse-

quently, the cost function becomes :
Ji(h) = KX X 0 h+ A|[RD. (22)

By using a stochastic gradient minimization, we can
write the solution as :

hit1 = hy, — uV 71 (hy) (23)
where p is a small positive step size and V is a gradient
operator. The gradient of 77 (h) is given by :

_0J1(h)
~ 0Oh

VJi(h) —2xlxyh+Aph  (24)

where _
h(i) = sign(h(d)) [h(i)["~". (25)

The unit norm constraint is to ensure that the iterative
algorithm does not converge to a trivial solution with
all zero elements. It is applied after each updating step.
Therefore the update equation is given by :

hi — (2 X X0k + A p ﬁk)

Hhk —u (2 XE X0 hy + A p ﬁk) H2

hit1 = (26)

Step 2 : According to the ML approach, we use the first
step channel estimate to compute the weighting matrix

#
(gﬁg M) leading to the cost function :

#
To(h) = hH X5 (GG )" Xk + ARIL. (27)

Therefore, by using a stochastic gradient minimization,
the iterative solution can be written as :

hk-i—l = hk - ;J,ng(hk). (28)

In order to determine the gradient in equation (28), we
take a derivative of J2(h) with respect to h :

H (~H # 7
and thus, the update equation is given by :

# -
hy — o <2 25 (G5Gn)" Xarhi + 2 p hk)

hiy1 = # ~
Hh;C — (2 xil (gﬁ\q/[gM) Xyhi+Ap hk)

2
4.1 Optimal step size

In order to avoid divergence, a conservatively small
w is usually used, which inevitably sacrifies the conver-
gence speed of the iterative algorithm. In this section, we
will derive an optimal step size for the MAP algorithm
and hence propose a variable step size MAP algorithm.
To find an optimal step size u for each iteration we pro-
pose to use a line search method. More precisely, we
choose a line search, in which p is chosen to minimize

Ji, t=1,2
p=argmin {7 (h = pVIT(R)}  (30)

The criterion in the (k + 1)** iteration is written as fol-
low :

Ji(hi1) = hilo1 Qibiyr + Mhea |5 (31)

#
with Q1 = X Xy, and @, = X% (gﬁggM) Xar.

By replacing hj41 by (23) or (28) we rewrite equation
(31) as:

Ti(his1) = (hi, — pV Ti ()™ Qi (hie — uV Ti(hy))

Ay — gV T (I
(32)



we take a derivative of J;(hg41) with respect to p :

0Ji(h
E?ukﬂ) =Fi(p) =

12V Ti(hi)" Qi — A p 71) — 2h{! Q] VT (he)

where
7(i) = sign (h(i) — pV.J (R)(i)) |h(i) — pV.T (R)(i)[P~" .

Therefore, the optimal step size in each iteration is ob-
tained in the form :

Hk—1 — Hk—2
Filpr—1) — Fi(pe—2)

where we use an approximate Newton approach for sol-
ving (30).

i = po—1 — Fi(ftk—1) (33)

5. SIMULATION

We present here some numerical simulations to as-
sess the performance of the proposed algorithm. We
consider a SIMO system with M = 3 outputs represen-
ted by polynomial transfer function of degree L = 64.
The channel impulse response is a sparse sequence of
random variables with Bernoulli-Gaussian distribution

18] :

f(hi) = pis(hi) + (1 — p;)

exp (—hf/QU?)

1
\/ 27rai2

generated by the MATLAB function SPRANDN. We
used the parameters p; = 0.5 and o; = 1. The input
signal is a 4-QAM 1i.i.d. sequence of length T" = 512.
The observation is corrupted by addition white Gaus-
sian noise gvith a variance o2 chosen such that the
SNR = % varies in the range [5,50] dB. The weigh-
ting parameter for the MAP algorithm is chosen as
A = 1. Statistics are evaluated over N, = 200 Monte-
Carlo runs and estimation performance are given by the
normalized mean-square error criterion :

1 Hah —h|?
mln
er; : ( A2

hfh

1 & ’
= R 1 s
N, Zl <|h ||h||>

NMSE =

T
T

where h, denotes the estimated channel coefficient vec-
tor at the r** Monte-Carlo run and « is a scalar factor
that compensates for the scale indeterminacy of the BSI
problem.

In figure 1, the normalized mean-square error is plotted
versus the SNR for the proposed algorithm and the ML
algorithm. It is clearly shown that our algorithm (MAP)
performs better in terms of the normalized mean-square
error especially for moderate and high SNR.

In figure 2, we represent the evolution of the cost func-
tion in dB as a function of the iteration number for the
gradient with fixed and optimal step size techniques. It
is shown that the optimal step size technique converges
much faster than the fixed step size one.
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FIGURE 1 — Normalized mean-square error (NMSE) ver-
sus the SNR for SIMO system with 3 sensors : compa-
rison between ML and the proposed MAP algorithm.
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FIGURE 2 — Evolution of the cost function in dB as a
function of the iteration number.
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FIGURE 3 — Normalized mean-square error (NMSE) ver-
sus the overestimated channel order for SIMO system
with 3 sensors and for different value of the SNR.



In figure 3, we represent the evolution of the NMSE in
dB as a function of the overestimated channel order for
the MAP algorithm. This figure illustrates the robust-
ness of our algorithm against channel order overestima-
tion errors.
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FIGURE 4 — Normalized mean-square error (NMSE) ver-
sus the SNR for SIMO system with 3 sensors : perfor-
mance of our MAP algorithm for different value of the
regularization parameter A.

In figure 4, we represent the NMSE as a function of
the SNR for different values of the weighting parameter
A. We observe that, for large SNRs, small A values are
preferred, while for low SNRs, the large A\ values are
those leading to the best channel estimation accuracy.
From this observation we plan for our futur works to
study the optimization of the parameter A in the MAP
algorithm.

6. CONCLUSION

This paper introduces a generalized version of the
ML method for the blind estimation of sparse and long
SIMO channel impulse responses. In the proposed me-
thod, we use a channel sparsity measure together with
the ML criterion to improve the estimation quality and
to take into account the sparsity of the channel. A gra-
dient type technique with optimized step size has been
considered for the optimization of the proposed cost
function. Besides its improved performance, the new BSI
method is robust against channel order overestimation
errors.
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