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ABSTRACT In this work, we propose a robust transmit beamform-
. ing technique that maximizes the average SNR performance
%nd use probabilistic constraints to keep the worst-case pe
Xformance at a very low probability. The aforementioned
nel Sl oraon at e Uansmiler (CSIT) WHEN B cortonmg e sesss acormn o e v
ically not available in practice. In such situations, th.e de hand, although the maximin approach provides the best per-
€ormance in the worst case, it is overall too conservative. T

so that the beamformers are less sensitive to these erro ep balance between the average and the worst-case per-
Two robust approaches are widely used. The stochastic a

.ot f5rmance, we take a more flexible approach in which the ex-
proach optimizes the average performance of the system alﬂlg ; PP

that the statisti h q : e (but rare) conditions are taken into account proporti
assumes that the statisucs, such as mean and covarianCeofy, oyr approach maximizes the average SNR performance

:Ee errors Emle knotwn. Thetmaximin ap;t)rpe:ch assumez thahd ensures robustness against the CSIT error by keeping the
ne errors belong 1o a worst-case uncertainty region and oo apjjity of the worst-case performance at a very lowlleve
timizes the worst-case system performance. This type of dgynqer the assumption that the CSIT error is Gaussian dis-
sign usually leads to conservative results as the Worst-Cagip e, this stochastic optimization problem can betfert

conditions may occufrlat %Ivery low prﬁbﬁbility. In this pﬁper simplified to equivalent deterministic forms which can be ef
we propose a more flexible approach that optimizes the avg, iently solved by modern convex optimization algorithms

erage beamforming performance and takes the extreme (b Simulation results show the proposed approach pravide

rare) conditions into account proportionally. Simulati@q 5 pest performance among several state-of-the-art beam-
sults show that the proposed beamformer offers higher Forming techniques.

bustness against errors in CSIT than serval state-ofithe-a 11,4 paper is organized as follows. The system model is

beamformers. described in Section 2. We formulate the proposed method
as a stochastic optimization problem in Section 3 and

1. INTRODUCTION simplify it to an equivalent convex optimization problem in
Subsection 3.1 and 3.2. Simulation results are presentkd an

Multi-antenna diversity is well motivated in wireless com- discussed in Section 4. Conc|uding remarks are given in
munication systems because it offers significant advastageection 5.

over single antenna [7]. Perfect or partial knowledge of the

channel state information (CSIT) can provide further perfo Ngtation: ()" denotes Hermitian transposgf-] stands for

mance enhancement[10][11]. expectation; tf-} is the trace of a matrixIx denotes the
However, in practical wireless systems, the accuracy oidentity matrix of sizeK; Ok .p denotes an all-zero matrix of

the CSIT is impossible to know due to errors induced by imsizeK x P; diag{x} stands for a diagonal matrix with on

perfect (quantized, erroneous, or outdated) channel éedb  its diagonal{-}; denotes thgth entry of a vectorh; denotes

In such situations, the transmit beamforming design shoulghe jth column of matrixH.

take into account errors in channel estimates. EXxisting ro-

bust transmit beamforming designs can be categorized into 2. SYSTEM MODEL

stochastic and maximin approaches. The stochastic agproac . ) . L

[6][10] [11] assumes that statistics of errors in CSIT, sash We consider a single-user erele.ss communication system

mean and covariance, are known and optimizes the averal§éh M transmit antennas and a single receive antenna. The

performance of the system. On the other hand, the maximifyformation-bearing signalis spread by the precoding ma-

approach considers channel estimation errors as determinflix € and then transmitted through the flat fading channel.

tic and optimizes the worst-case system performance [1] [2]*S We focus on symbol-by-symbol detection, the received

This approach provides robustness against any error in thudnaly in the presence of additive white Gaussian neise

worst-case region. However, it is overly conservative as th'S 9iven by

worst operational condition is rare. To overcome this prob- y = Chs+w. (1)

lem, a more flexible probabilistic constraint is introdu@ed In the perfect CSIT case, the estimated channel at the trans-

[9] into the design of adaptive beamformer at the receivemitter is error free and the outpsf maximum ratio com-

side. bining (MRC) at the receiver is given by

performance of wireless communication systems. Most e
isting transmit beamforming techniques require perfeabeh
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To simplify the above problem, we consider the eigen-

§=(Ch)'y =h"cHChs+h"CMHw. (2)  decomposition of2"C
The average signal-to-noise ratio (SNR) at MRC receiver cHc =uD.U", @)
output is
whereUg = [ug,, ..., ug,] consists of eigenvectors arc
SNR_ E (h"cHcChs) (hHCHChs) H  Es andD. = diag{dy,,...,dq, } is a diagonal matrix with corre-

WFCAwwHCh N —h"C"Ch, sponding eigenvaluak, > ...dg, > 0. The precoding ma-
trix C can be viewed as a weight matrix. The error covari-

2 (3 anceRe is positive definite and can be factorized as
whereEs = E [|s?] is the average energy of the signal and

No/2 is the noise variance. Re= VeVg, (8)

To extend the model to a system withreceive anten-
nas, we assume that the channel vectors observed on dlffewhere Ve is a nonsingular matrix. Then the product
ent receive antennas are mutually uncorrelated. The chann¥5 CHCV, can be simplified as follows
vector denotes ds; for jth receive antenna, and is arranged HAH " u u u
into aM x N matrixH = [hy, ..., hy]. Similar to the single- Ve C"CVe= (U Ve)" Dc(Ug Ve) =P"DcP,  (9)
receive-antenna case, the received signal ajtthantennais

vj = Ch;s+wj. The total receiver SNR at the output of the WhereP = Ug' V. .
MRC is Since the average SNR depends on the beamforming ma-
trix C throughCHC, it suffices to optimize the objective
SNR Es N WM Ch ESt HiCHOH 4 function with respect tdJ. andDe. DefineH = UHH and
" No le i 7 No r{ O UHE. The objective function in (6) can be rewritten as

E[tr{(A+ECMCH+E)}]

which includes (3) as a special case correspondimgtol. . o
= E[r{(H+E)"D(H+E)}]

3. ROBUST BEAMFORMING BASED ON B NV e .
PROBABIL ISTIC-CONSTRAINED OPTIMIZATION = tw{Dc[HH" +E[HE"| +E[H"E] +E[EE"]]}

We consider the case in which the transmitter does not have = {Dc(R+Re)}, (10)
exact channel state information (CSI) but has an estifate | ... _ [HF"] andRe = E [ERBM].

of the channel matriff. The CSIT error matrix is given by The probabilistic constraint in (6) becomes mathemat-
ically tractable if we can find a closed expression for the

distribution of the random variable{ttH + E)H CHC(H +
E)}. Applying a non-singular linear transformation [4], this

E=[ey,...,en] = H—H. (5)

We assume thatj is complex normally distributed and inde- {0~ 2 b2 b written as
pendent from the estimate chani| i.e. E {h”ej} =0.1In

. HH e
the proposed approach, we optimize the average SNR at tI%\lR o tr{(H+E) CTC(H+ E)}
output of MRC receiver and achieve the robustness by keep- — tr{(fI +E v tvicHeovev i (H+ E)}
ing the outage probability of the instantaneous SNR below a
pre-specified level. For simplicity, assumiig/Ny is con- 1A H 1
stant in one symbol interval, we will drop the c/:onstant facto - tr{ {PVe (H+ E)} Dc [PVe (H+ E)} }
Es/No from the SNR expression. - o

Our objective is to derive the precording matfixthat = tr {(H +E)"D(H+ E)}
maximizes the average SNR and has a low outage probabil- N
ity. More specifically, the design of robust beamforming ma- _ d Z (ﬁ.. +8& _)2 (11)
trix can be achieved by solving the following optimization “ R
problem

whereH = PV 'H andE = PV_'E . The random ma-

% HeH o =
max E [tr{(H+E)"C"C(H+E)}], trix E has normal distribution with zero mean and covariance

subject to matrix Iyxm-
- HAH e Using (10) and (11), the proposed approach can be refor-
P{tr{H+E)"C"CH+E)} <y} <p, mulated as follows:
H _ < o

e =1, ©) max tr{D:(R+Re)}, (12)
wherey denotes the SNR thresholgd, is a pre-specified subject to ¢
probability value that satisfies quality of service (QoS) re N = .~
quirements, ang® {A} stands for the probability of eveAt P {tr{(H+E)"D(H+E)} <y} <p, (13)
Typically we select a low probability valygand high thresh- tr{Dc} =1. (14)

old valuey . The deterministic constraintftt"C} = 1 re-
flects the fact that the total transmitted power is limited byThe robust beamformer design is now in the form of a
the system. probabilistic-constrained stochastic optimization peaob.
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Under the assumption that the error in CSIT is Gaussianyhere
the stochastic optimization can be converted into a convex

optimization problem which can be efficiently solved using . sme 2
modern convex optimization methods. Lo up(u Zldc. ni+9°) — —V
3.1 Relaxation of Convex Constraint lim ‘up(u ) =+
In convex programming, both the objective function and the P - if y>0
constraints are required to be convex. We repla@dd¢i = 1 lim 8(u)={ - if y<O
with an inequality constraint which is easier to satisfattis U— Tsm . nide|dg 1 y=0
tr{D¢} <1 (15)
This is equivalent to relaxing the constraint (6) to With (18), the probabilistic constraint (11) can be trans-
H formed into a convex constraint as follows
tr{C"C} <1.
M
Theorem The optimization problem defined in (12)-(14) 1 ier 1 de, (ni +82) < p. (19)
is equivalent to that with the strict constraint (14) being 2 2m 27Ti; ' v

replaced by the relaxed constraint (15)
_ With the relaxation (15) and the expression (19), the orig-
Proof: Suppose the optimal solutidd lies in the region inal stochastic optimization problem (6) is now converted
g{Dc} < 1. This implies that the maximum of (14) is given into the convex optimization problem defined as follows.
y
tr{Dc(R+Re)}. max tr{D¢(R+Re)}, (20)
However, we can always construct another maldik by De

multiplying D¢ with a positive constant = 1/tr{D¢} > 1, subject to

so that the constraint{fD.} = 1 is satisfied. This leads to 1 1

the following inequality: > o/ T on chu ni+3%) <p,
tr{D{(R+Re)} >tr{Dc (R+Re)}. (16) tr{Dc} <1

This inequality (16) contradicts our assumption thgtmax-
imizes (12). Thus, a matriD. satisfying the constraint
tr{Dc} < 1 can not be the optimal solution. In other words
the optimal solution always satisfies the original conatrai
tr{D¢} = 1. Hence, the objective function (12)-(14) can be
equivalently transformed into a convex optimization pewbl
by relaxing the constraint{D.} = 1 to tr{D¢} < 1. O

The optimal solution can be efficiently found by modern
convex optimization algorithms, such as CVX [3]. CVX soft-
‘ware package is a Matlab-based modeling system for convex
optimization that allows constraints and objective fuoics
to be specified using standard Matlab expression syntax.

4. SIMULATION RESULTS

3.2 Reformulation of Probabilistic Constraint The proposed beamformer is tested by simulation. We con-
To make the proposed approach tractable, we apply Imhof'sider a single-user MIMO system witi = 4 transmit an-
results [5] to approximate the distribution of the quadrati tennas andN = 3 receive antennas. A hundred Monte Carlo
formtr{(H+E)"D.(H-+E)} and transform the probabilis- trials were performed in each experiment. The proposed

tic constraint into a deterministic constraint. beamformer is compared with existing techniques, such as
We consider the quadratic form (11) as a linear combinathe worst-case one-directional, equal-power loading beam
tion of noncentraj?-distributed random variables former and robust beamformer [1]. Without any loss of gen-
M N M erality, we assume the following:
Zldci Z (ﬁi,j +é,j)2 _ ZdCin% 52 a7) e Channel paraments: Angle of sprefds related to the
[ =1 i= v channel state information. The angle of spread deter-

mines the spatial correlations of the channel. For the

where x2 ,, i = 1,...,M are independent noncentrgf-

.32 small angle spread, the correlation coefficient between
dlstrlbuted random variables with degree of freedgrs N the pth andqgth transmit antenna can be presented as [8]
and non-centrality parametéf = 3}, i?;. Imhof has de-
rived an integral form of the cumulative distribution fuioet 1 / _ ﬁ
for random variables in the form of (17). Based on the results [Rlpg~ oty &P j2r(p—@)A3" sind| do,

of [5], the probabilistic constraint can be rewritten as
whereA is the wavelength of a narrow-band sigrdalthe

M
P{ chi (ni+&)2 <y} antenna spacing arilthe angle of spread.
i _ e Sample covariance matrix: The channel covariance ma-
_ 1 (1 1/“’ S'”G(U)du trix R is estimated by sampling the instantaneous chan-
2 mo up( ) nels
. 1N
1 1 R==Y ag"
N.

- - = 2
= 3 y+ anldc' ni + &7) (18)
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Figure 1: SNR performance under the different parament sd=igure 2: SNR performance of one-directional beamformer,
lection, whereh = 45° equal-power-loading beamformer, worst-case robust beam-
formers [1] and [6], proposed beamformer versus eryce
09,p=01,A=5
e Estimated error at the transmitter: We assume that the
error is Gaussian distributed with zero mean and covari-

ance matrixo?I, that is, the transmit power trends to be loaded equally. The perfor-
mances of both worst-case robust beamformers tend to that
Emxm ~ €A (0,0°1). of the equal-power-loading robust beamformer. Meanwhile,
the one-directional beamformer offers the worst perforoean
In our simulation, the error is varied from@l to Q9. as the error increases. On the other hand, the proposed beam-

former still offers the highest average SNR in the entireterr

Firstly, we compare performances under varies choicesange.
of parametersy and p , shown in Fig. 1. We set the
spread anglé& = 45°. With the same probability = 0.1,
the high-threshold beamformey & 0.9) outperforms the 5 CONCLUSION
low-threshold oney(= 0.4). One the other hand, under the In this work, we propose a novel transmit beamformer
same SNR threshold= 0.4, the beamformer witpp=0.01  design that maximizes average SNR performance and also
achieves an overall higher SNR than= 0.6. This implies guarantees robustness against the CSIT errors. The robust
that a low outage probability ensures robustness against gransmit beamformer design is formulated as a stochastic
rors. In Fig. 1, we can also observe that the proposed transptimization problem. Under the assumption that the CSIT
mit beamformer is sensitive to the selection of the outagerror is Gaussian distributed, the underlying stochagite o
probability p. mization problem is transformed into a convex optimization

Then we compare the average SNR performance of theroblem which can be efficiently solved by modern software
proposed transmit beamformer and four other existing methpackages. Simulation results show that the proposed robust
ods. According to the quality of service (QoS) requiremgntstransmit beamformer is less sensitive to the errors in CSIT
we select a low probability valup = 0.1 and a high SNR and outperforms several state-of-the-art robust beanifigrm
thresholdy = 0.9. algorithms.

In Fig.2, the angle of spread i$ &nd the correlation be-
tweenpth andgth channel is high. That means less knowl-
edge of CSIT can be obtained and the MRC output of SNR
is more sensitive to the error. In this case, worst-casestobu
beamformers[1] [6] and one-directional beamformer [7}pre
fer to focus all available power on the channel’s strongest d
lrectlon. And the _equal—pow_er—loadlng t_)ear_nformer equally channel state informatiohEEE Transactionson Sgnal
oads the transmit power without considering CSIT. How- Processing, 54(5):1596—1609, May 2006
ever, in the proposed beamformer, the instantaneous SNR is esSing, i »viay ) .
controlled by the probabilistic constraint and the progose [2] A. Abdel-Samad and A. Gershman. Robust trasmit
robust design offers the best performance over other beam-  €igen-beamforming with imperfect knowledge of chan-
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