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ABSTRACT

The knowledge about the number of signals plays a crucial
role in array processing. The performance of most direc-
tion finding algorithms relies strongly on a correctly specified
number of signals. When the number of signals is unknown,
conventional approaches apply information theoretic criteria
or multiple tests to estimate the number of signals and pa-
rameters of interest simultaneously. These methods usually
compute ML estimates for a hierarchy of nested models. The
total computational complexity is significantly higher than
the standard ML procedure. In this contribution, we develop
a novel ML approach that computes ML estimates only for
the maximal hypothesized number of signals. Furthermore,
we introduce a multiple hypothesis test to identify relevant
components that are associated with the true DOA parame-
ters. Numerical experiments show that the proposed method
provides comparable estimation accuracy as the standard ML
method does.

1. INTRODUCTION

The problem of estimating direction of arrival (DOA) is a key
issue in array processing. Among existing methods, the max-
imum likelihood (ML) approach has the best statistical prop-
erties and is robust against small sample numbers, signal co-
herence and closely located sources.

The standard ML method assumes the number of signals,
m, to be known and maximizes the likelihood function over
anm-dimensional parameter space. When the number of sig-
nals is unknown, conventional approaches estimate DOA pa-
rameters along withm using the information theoretic crite-
rion based methods [9, 11] or the multiple hypothesis tests
[6, 7] in a sequential manner. Given the maximal hypothe-
sized number of signals,M , these methods compute ML esti-
mates for a hierarchy of nested models and select the one that
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best fits the underlying criterion. Since the likelihood func-
tion is optimized over a series of candidate models, the total
computational cost can be significantly higher than standard
ML estimation.

In this work, we suggest a novel procedure thatonlycom-
putes ML estimates for the maximal hypothesized model. The
proposed approach is motivated by the fact that the ML esti-
mator derived from an overestimated model order contains
components that coincide with the true parameters [2]. We
also introduce a multiple hypothesis test to identify relevant
components. In the previous contribution based on stochas-
tic signal models [3], the relevant components are chosen by
thresholding the likelihood function. Here we consider de-
terministic signal models and select relevant components in
a statistically justified manner. Since the multiple test takes
data distribution into account, the resulting estimates should
be more reliable than those of [3].

Although the primary purpose of the proposed algorithm
is estimating DOA parameters for unknown numbers of sig-
nals, we can determine the number of signals based on the
number of relevant components. Clearly, the proposed ap-
proach requires no sequential maximization over various pa-
rameter spaces and is computationally more attractive than
conventional methods.

In the following, we give a brief description of determinis-
tic signal models. Section 3 includes asymptotic properties of
ML estimation of misspecified numbers of signals. In Section
4, we develop the proposed ML estimation algorithm for un-
known numbers of signals. Simulation results are presented
in Section 5. Concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

Consider an array ofn sensors receivingm narrow band sig-
nals emitted by far-field sources located atθm =[ θ1,. . ., θm]T .
The array outputx(t) is described as

x(t) = Hm(θm)sm(t) + n(t), t = 1, . . . , T, (1)

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



where theith column d(θi) of the matrix

Hm(θm) = [d(θ1) · · ·d(θi) · · ·d(θm)] (2)

represents the steering vector associated with the signal arriv-
ing fromθi. Then×m matrixHm(θm) is assumed to be full
rank. The complex signal waveformsm(t)=[s1(t),. . ., sm(t)]T

is considered as deterministic and unknown. The noise vector
n(t) is independent, identically complex normally distributed
with zero mean and covariance matrixνIn, whereν denotes
the unknown noise spectral parameter.

Based on the observations{x(t)}T
t=1 and a pre-specified

number of signalsm, the ML estimate is obtained by mini-
mizing the negative concentrated likelihood function [1]

θ̂m = argmin
θm

lT (θm),

lT (θm) = tr[P⊥

m(θm)Ĉx ], (3)

whereP
⊥

m(θm) = I −P m(θm) andP m(θm) is the projec-
tion matrix into the column space ofHm(θm). The sample
covariance matrix̂Cx = 1

T

∑T

t=1 x(t)x(t)H .

The problem of central interest is to estimate the DOA
parameters when the true number of signals,m0, is unknown.
In the following we shall develop an algorithm that requires
only an upper bound on the number of signals. The proposed
approach is motivated by the fact that for an overestimated
number of signals, the ML estimate contains components that
coincide with the true parameters.

3. ML ESTIMATION FOR MISSPECIFIED
NUMBERS OF SIGNALS

It is well established that the ML estimator converges to the
true parameterθ0 with increasing sample size [5, 8] when the
number of signals,m, is correctly specified. Form 6= m0,
we applied the general theory of misspecified nonlinear least
regression models [10] to study the asymptotic behavior of
the ML estimator. In [2, 4], we showed that for a misspecified
m, the ML estimator̂θm converges to a well defined limit
θ
∗

m that minimizes the ensemble average of the concentrated
likelihood function

l(θm) = E
{

tr[P⊥

m(θm)x(t)x(t)H ]
}

. (4)

The signal subspace computed atθ
∗

m is related to the true sig-
nal subspacesp(Hm0

(θ0)) with as follows.

Consistency Property

(a) Form < m0,

sp(Hm(θ∗

m)) ⊂ sp(Hm0
(θ0)) (5)

and the elements ofθ∗

m coincide withm elements ofθ0 for
widely separated sources.

(b) Form > m0,

sp(Hm(θ∗

m)) ⊃ sp(Hm0
(θ0)) (6)

andθ
∗

m containsm0 components equal to those ofθ0. The
remaining(m − m0) components of are unpredictable.

Proof Details can be found in [2]. �

Part (b) suggests that when exact knowledge about the
number of signals is not available, the estimates for the true
parameterθ0 can be obtained by computing the ML estimates
for an overparameterized model withm > m0.

4. ROBUST ML ESTIMATION

Let M denote an upper bound on the number of signals. Mo-
tivated by the consistency property discussed previously,we
propose to compute the ML estimate for the overparameter-
ized modelm = M and select relevant components that are
associated with the true parameters. More specifically, the
proposed algorithm computes the ML estimateθ̂M by min-
imizing the negative log-likelihood function (3) over anM -
dimensional space

θ̂M = arg min
θM

lT (θM ). (7)

SinceM ≥ m0, theM × 1 vectorθ̂M = [θ̂1, . . . , θ̂M ]T con-
tains more elements than them0 × 1 true parameter vector
θ0 does. As discussed previously, for largeT , a subset of the
elements in̂θM may coincide with those ofθ0. The elements
of θ̂M that are associated with those ofθ0 , are referred to as
relevantcomponents. The remaining(M − m0) components
of θ̂M are referred to asredundantcomponents.

A key step in such max-search procedure is identification
of relevant components. In [3], the relevant components are
selected by thresholding the likelihood function because the
redundant components do not change the value of the likeli-
hood function. The threshold used in [3] is chosen in anad
hocmanner. In this contribution, we consider the following
hypothesis test to validate theith component:

Hi : x(t) = HM−1(θ̃i)s̃M−1(t) + n(t)

Ai : x(t) = HM (θ̂M )sM (t) + n(t) (8)

whereHi andAi represent the null hypothesis and the alter-
native, respectively. The(M − 1) × 1 vector

θ̃i = [θ̂1 · · · θ̂i−1 θ̂i+1 · · · θ̂M ]T (9)
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contains all elements of̂θM except theith component. The
n×(M −1) matrixHM−1(θ̃i) contains steering vectors cor-
responding to the DOA parameters inθ̂M−1.

Applying the likelihood ratio principle, we obtain the fol-
lowing test statistic for testingHi againstAi:

Ti = log

(

tr[(I − P M−1(θ̃i))Ĉx]

tr[(I − P M (θ̂M ))Ĉx]

)

(10)

= log

(

1 +
n1

n2
Fi

)

. (11)

Under the null hypothesisHi, the statistic

Fi =
n2

n1

tr[(P M (θ̂M ) − P M−1(θ̃i))Ĉx]

tr[(I − P M (θ̂M ))Ĉx]
(12)

isFn1,n2
–distributed with the degrees of freedomn1, n2 given

by [6]

n1 = 3T, n2 = T (2n− 2M − 1). (13)

The component̂θi is considered as relevant if

Fi ≥ tα, (14)

wheretα is the threshold for a given significance levelα.

Compared to the thresholding strategy proposed in [3],
the hypothesis test (8) incorporate data distribution intothe
selection step. Hence the probability of correct detectionis
expected to be higher than that of [3]. Using (14) we control
the significance level of individual testsHi, (i = 1, . . . , M)
rather than the global test level. A more sophisticated test
procedure taking the multiplicity into account is still under
investigation.

Let the relevant vector̂θ0 = [θ̂(1), . . . , θ̂(k)] include all
the relevant components validated by the test (8). Although
the primary purpose of the proposed algorithm is to estimate
wave parameters, the number of relevant components pro-
vides indirectly an estimate for the number of signals.

In summary, given an upper bound on the number of the
signalsM and the thresholdtα, the proposed algorithm pro-
ceeds as follows.

Input: {x(t) : t = 1, . . . , T}, M , tα.

1. Find the ML estimatêθM by (7).

2. Compute the statisticFi, i = 1, . . ., M , by (12).

3. TestHi againstAi to select relevant components.

θ̂i is relevant ifFi ≥ tα.

Output: θ̂0 = [θ̂(1), θ̂(2), . . . , θ̂(k)]
T .

Table 1: Deterministic ML Estimation Algorithm for
Unknown Numbers of Signals.

5. SIMULATION

We test the proposed algorithm on simulated data. In partic-
ular, we shall investigate whether the relevant estimates pro-
vide useful information about the true parameters.

In the numerical experiments, a uniform linear of 10 sen-
sors with inter-element spacings of half a wavelength is em-
ployed. The narrow band signals are generated bym0 = 2 un-
correlated signals located at[ 26◦ 36◦] of various strengths.
The two signals are separated about half of the beamwidth.
The difference of signal strengths is[ 1 0 ] dB where0 dB
corresponds to the reference signal. The signal to noise ra-
tio (SNR), defined as10 log

(

E(|si(t)|
2)/ν

)

for the ith sig-
nal, varies from−10 to 10 dB in a 2 dB step. We generate
T = 100 snapshots for each of the 200 trials performed.
The upper bound on the number of signals is chosen to be
M = 3, 4. The significance levelα = 0.1. For comparison,
we apply the ML approach to the same batch of data using the
correct number of signals,m0 = 2.

Fig. 1 shows the bias of the relevant componentsθ̂(1),

θ̂(2), respectively. For all three curves corresponding toM =
2, 3, 4 the bias is less than0.1 degree over the entire SNR
range. Since the results are obtained from finite samples, we
conjecture that̂θ(1) andθ̂(2) are asymptotically bias free.

The standard deviation (square root of empirical variance)
of θ̂(1) andθ̂(2) are presented in Fig. 2. All three curves de-
cline with increasing SNR. The estimates obtained from the
correct number of signalsM = m0 = 2 lead to the small-
est variances. In the upper panel we can observe that the first
relevant component̂θ(1) is better estimated byM = 4 than
M = 3. However, in the lower panel,M = 4 results in a
larger variance thanM = 3. This implies that the variance
of each component does not necessarily increase with a larger
degree of mismatch.
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Fig. 1. Bias. M = 2, 3, 4. The true DOA parameterθ0 =
[26◦ 36◦], SNR= [−10 : 2 : 10] dB.

In Fig. 3, we compare the probability of correct detection
of the proposed algorithm with the popular MDL criterion
based approach [9]. By “correct detection”, we mean that the
number of relevant components equals the true number of sig-
nals. For low SNR region,−10 to −8 dB, bothM = 3 and
M = 4 have a higher probability of correct detection. For
SNR−6 to 10 dB, MDL achieves100% probability of cor-
rect detection, whileM = 3, 4 increase from90% to over
96%. The curve associated withM = 3 shows a slightly
higher probability of correct detection than that ofM = 4.
The results suggest that without computing ML estimates for
all candidate models, the proposed algorithm has compara-
ble performance as the computationally more involved MDL
approach.

6. CONCLUSION

We developed a ML estimation procedure for unknown num-
bers of signals based on deterministic signal models. The sug-
gested algorithm computes ML estimates only for the maxi-
mal hypothesized number of signals. Compared to traditional
methods for joint parameter estimation and signal detection,
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Fig. 2. Standard deviation of̂θ(i), i = 1, 2.

the proposed max-search approach avoids the full search pro-
cess through a series of nested models and leads to signifi-
cant improvement in computational efficiency. The relevant
components that are associated with the true DOA parame-
ters are identified by a multiple hypothesis test. Numerical
results showed that the proposed algorithm achieves compa-
rable estimation accuracy as the standard ML approach does.
Furthermore, the number of signals can be accurately deter-
mined by the number of relevant components. The proposed
algorithm provides a computationally attractive alternative to
existing joint parameter estimation and signal detection meth-
ods.
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nalscḧatzung mit Sensorgruppen. Dr.–Ing. Dissertation,
Faculty of Electrical Engineering, Ruhr–Universität
Bochum, Shaker Verlag, Aachen, 1993.

[6] D. Maiwald. Breitbandverfahren zur Signalentdeck-
ung und –ortung mit Sensorgruppen in Seismik– und
Sonaranwendungen. Dr.–Ing. Dissertation, Dept.
of Electrical Engineering, Ruhr–Universität Bochum,
Shaker Verlag, Aachen, 1995.
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