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ABSTRACT best fits the underlying criterion. Since the likelihood dun

The knowledge about the number of signals plays a crucid|o" IS Optimized over a series of candidate models, the tota
role in array processing. The performance of most direc_compu_tatlo_nal cost can be significantly higher than stahdar
tion finding algorithms relies strongly on a correctly sfied ML estimation.

number of signals. When the number of signals is unknown, !N this work, we suggest a novel procedure ity com-
conventional approaches apply information theoretiedit putes ML estimates f_orthe maX|maI hypothesized model. Th_e
or multiple tests to estimate the number of signals and pa2roPosed approach is motivated by the fact that the ML esti-
rameters of interest simultaneously. These methods ysualator derived from an overestimated model order contains
compute ML estimates for a hierarchy of nested models. ThEMPonents that coincide with the true parameters [2]. We
total computational complexity is significantly higher tha @ISO introduce a multiple hypothesis test to identify rafgv
the standard ML procedure. In this contribution, we develosOmpPonents. In the previous contribution based on stochas-
a novel ML approach that computes ML estimates only folliC Signal models [3], the relevant components are chosen by
the maximal hypothesized number of signals. Furthermordhresholding the likelihood function. Here we consider de-
we introduce a multiple hypothesis test to identify relaévan ©rministic signal models and select relevant components i
components that are associated with the true DOA paramé-Statistically justified manner. Since the multiple teketa
ters. Numerical experiments show that the proposed methdift@ distribution into account, the resulting estimatesugh

provides comparable estimation accuracy as the standard M€ more reliable than those of [3]. .
method does. Although the primary purpose of the proposed algorithm

is estimating DOA parameters for unknown numbers of sig-
nals, we can determine the number of signals based on the
number of relevant components. Clearly, the proposed ap-

The problem of estimating direction of arrival (DOA) is a key proach requires no seguenhal maximization over various pa
rameter spaces and is computationally more attractive than

issue in array processing. Among existing methods, the max tional method
imum likelihood (ML) approach has the best statistical prop conventional methods.

erties and is robust against small sample numbers, signal cg In th?follgwllng,swetnga_l brlle;descnpnotn ?fdeterm;t;us-
herence and closely located sources. ic signal models. Section 3 includes asymptotic properife

The standard ML method assumes the number of signal ’L estimation of misspecified numbers of signals. In Section

m, to be known and maximizes the likelihood function over, '’ we develop the proposed ML estimation algorithm for un-

anm-dimensional parameter space. When the number of Siignown numbers of signals. Simulation results are presented

nals is unknown, conventional approaches estimate DOA p 1 Section 5. Concluding remarks are given in Section 6.

rameters along withn using the information theoretic crite-

rion based methods [9, 11] or the multiple hypothesis tests 2. PROBLEM FORMULATION

[6, 7] in a sequential manner. Given the maximal hypothe-

sized number of signald/, these methods compute ML esti- Consider an array af sensors receiving: narrow band sig-
mates for a hierarchy of nested models and select the one thzals emitted by far-field sources locatedat=61.. . ., 0,,,]".

The array outpuk(t) is described as

1. INTRODUCTION

P.-J. Chung acknowledges support of her position from thettiSh
Funding Council and their support of the Joint Researchtinstwith the
Heriot-Watt University as a component part of the EdinbuRgisearch Part-
nership. z(t) = Hp(Om)sm(t) +n(t), t=1,...,7, (1)
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where theith column d(6;) of the matrix and the elements @, coincide withm elements of, for
widely separated sources.
H,(0r) = [d(601)---d(6:) - - d(0m)] )

represents the steering vector associated with the sigmnal a (
ing fromé;. Then x m matrix H,,,(0,,) is assumed to be full .
rank. The complex signal waveforsy, (t) = [s1(t),. . ., s, (t)]" sp(Hm (0,,,)) 2 sp(Hm, (60)) (6)
is considered as deterministic and unknown. The noise vect@ndg* containsm, components equal to those &f. The

n(t) is independent, identically complex normally distributedyemaining(m — mo) components of are unpredictable.
with zero mean and covariance matriX,,, wherer denotes

the unknown noise spectral parameter. Proof Details can be foundin [2]. O

b) Form > my,

Based on the observatiofg(t)};_, and a pre-specified Part (b) suggests that when exact knowledge about the
number of signalsn, the ML estimate is obtained by mini- nymper of signals is not available, the estimates for the tru
mizing the negative concentrated likelihood function [1] paramete@), can be obtained by computing the ML estimates

for an overparameterized model with > my.

6, = argminlr(6,,),
Om R 4. ROBUST ML ESTIMATION
ZT(G'rn) - tr[PyLn(arn)C»L ]a (3)

Let M denote an upper bound on the number of signals. Mo-
tivated by the consistency property discussed previousdy,
) o 7 propose to compute the ML estimate for the overparameter-
trixC, = &>, x(t)z(t). i _
covariance matriy = 7 24—y ized modeln = M and select relevant components that are
) ] ) associated with the true parameters. More specifically, the
The problem of central interest is to estimate the DOAproposed algorithm computes the ML estimétg by min-

parameters when the true number of signailg, is unknown. imizing the negative log-likelihood function (3) over -
In the following we shall develop an algorithm that requiresyimensional space

only an upper bound on the number of signals. The proposed
approach is motivated by the fact that for an overestimated

whereP;-(0,,) = I — P,,(0,,) andP,,(0,,) is the projec-

7]
tion matrix into the column space & ,,,(0,,). The sample

0y = argminlr(0,y). 7
number of signals, the ML estimate contains components that M & Om 7(6) 0
coincide with the true parameters. Sincel > mo, the M x 1vect0réM _ [éh L éIVI]T con-
tains more elements than the, x 1 true parameter vector
3. ML ESTIMATION FOR MISSPECIFIED 8, does. As discussed previously, for laffiea subset of the
NUMBERS OF SIGNALS elements ir@,; may coincide with those d,. The elements

of 8, that are associated with those @ , are referred to as

It is well established that the ML estimator converges to th‘?elevantcomponents The remainirig/ — mo) components
true parametefl, with increasing sample size [5, 8] whenthe . » '

. . o of 8, are referred to aedundantomponents.
number of signalsin, is correctly specified. Fom # my,

we applied the general theory of misspecified nonlineat leas . ) . e
regression models [10] to study the asymptotic behavior of A key step in such max-search procedure is identification

the ML estimator. In [2, 4], we showed that for a misspecifiedOf relevant componen_ts. In [3]’ the relevant _components are
) p . .. ““selected by thresholding the likelihood function becatrge t
m, the ML estimatord,,, converges to a well defined limit

6. that minimizes the ensemble average of the concentrat rgdundant components do not change the value of the likeli-
o . g Hood function. The threshold used in [3] is chosen inadn
likelihood function . L . .
hocmanner. In this contribution, we consider the following
1(6,,) = E {tr[Pf;L(Om)m(t)m(t)H]} . ) hypothesis test to validate tlith component:
The signal subspace computed3t is related to the true sig- .
nal subspacep(H ,,,, (0)) with as follows. H; : x(t)=Hy 1(0:)3m-1(t) +n(t)
A; m(t) = H]\/[(OM)SI\/[(t) + n(t) (8)
Consistency Property
whereH; and A; represent the null hypothesis and the alter-
(a) Form < my, native, respectively. The\/ — 1) x 1 vector

sp(Hm(0;,)) C sp(H 1, (00)) (5) 0;=1[01 01 01 O] 9)
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contains all elements céfM~except theith component. The
nx (M —1) matrix H 5;_1(0;) contains steering vectors cor-
responding to the DOA parametersi;_; . Input: {x(t) : t =1,..., T}, M, t,.
Applying the likelihood ratio principle, we obtain the fol- 1. Find the ML estimat@,, by (7).
lowing test statistic for testingl; againstA;: 2. Compute the statistig}, i = 1, ..., M, by (12).

3. TestH,; againstA; to select relevant components.

T = log <tr[(I — PM—lA(éi))fjw]> (10) 0; is relevantifF; > t,.
tr[(I — Pp(00))C ) Output: 0y = [é(l), é(g), e é(k)]T-
= log (1 + EE) . (11)
N2
Table 1: Deterministic ML Estimation Algorithm for
Under the null hypothesi;, the statistic Unknown Numbers of Signals.

. S 5. SSIMULATION
_ 2 tr[(Pa(Onr) — Par—1(0:))Co] (12)

ny tr[(I — Pas(011))Ca) We test the proposed algorithm on simulated data. In partic-
ular, we shall investigate whether the relevant estimates p
vide useful information about the true parameters.

iS F, .n,—distributed with the degrees of freedam n given

by [6]
In the numerical experiments, a uniform linear of 10 sen-

sors with inter-element spacings of half a wavelength is em-
ny=3T, ny=T(2n—2M —1). (13)  ployed. The narrow band signals are generateagby-= 2 un-
correlated signals located &26° 36°] of various strengths.
R The two signals are separated about half of the beamwidth.
The component; is considered as relevant if The difference of signal strengths[is 0 ] dB where0 dB
corresponds to the reference signal. The signal to noise ra-
tio (SNR), defined as01log (E(|s;(t)[*)/v) for theith sig-

F; > ta, (14)  nal, varies from—10 to 10 dB in a 2 dB step. We generate
T = 100 snapshots for each of the 200 trials performed.
wheret,, is the threshold for a given significance level The upper bound on the number of signals is chosen to be

M = 3, 4. The significance levek = 0.1. For comparison,
we apply the ML approach to the same batch of data using the

Compared to the thresholding strategy proposed in [B]COrrectnumber of signalsyo — 2
0 — «-

the hypothesis test (8) incorporate data distribution the
selection step. Hence the probability of correct detecigon : . -
expected to be higher than that of [3]. Using (14) we control. Fig. 1 shows the bias of the relevant compqneﬂ@{%
the significance level of individual tesfg;, (i = 1,...,M) () respectively. For all three curves correspondingfo-=
rather than the global test level. A more sophisticated test 3:4 the bias is less thaf.1 degree over the entire SNR

procedure taking the multiplicity into account is still werd ange. Since the results are obtained from finite samples, we
investigation. conjecture tha# ;) andd,) are asymptotically bias free.

The standard deviation (square root of empirical variance)

the relevan components validated by the ist (). Alinougfl ) &0l are preseted in Fig. 2. Alhree curves de-
b y X 9%ine with increasing SNR. The estimates obtained from the

the primary purpose of the proposed algorithm is to esumatgorrect number of signald/ — my — 2 lead to the small
wave parameters, the number of relevant components pro-

. - : . est variances. In the upper panel we can observe that the first
vides indirectly an estimate for the number of signals. PO .
relevant componertl ) is better estimated by/ = 4 than

. M = 3. However, in the lower panell/ = 4 results in a
~ In summary, given an upper bound on the number of thgayger variance than/ = 3. This implies that the variance
signals}M and the threshold,, the proposed algorithm pro- f each component does not necessarily increase with a large
ceeds as follows. degree of mismatch.
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Fig. 1. Bias. M = 2,3,4. The true DOA parametd#, = Fig. 2. Standard deviation df;), i = 1, 2.

[26° 36°], SNR= [—10 : 2 : 10] dB.

the proposed max-search approach avoids the full seareh pro
cess through a series of nested models and leads to signifi-
In Fig. 3, we compare the probability of correct detectioncant improvement in computational efficiency. The relevant
of the proposed algorithm with the popular MDL criterion components that are associated with the true DOA parame-
based approach [9]. By “correct detection”, we mean that théers are identified by a multiple hypothesis test. Numerical
number of relevant components equals the true number of sigesults showed that the proposed algorithm achieves compa-
nals. For low SNR region;-10 to —8 dB, bothAM/ = 3 and  rable estimation accuracy as the standard ML approach does.
M = 4 have a higher probability of correct detection. ForFurthermore, the number of signals can be accurately deter-
SNR —6 to 10 dB, MDL achievesl00% probability of cor-  mined by the number of relevant components. The proposed
rect detection, whileM = 3,4 increase fromD0% to over algorithm provides a computationally attractive alteireto
96%. The curve associated withf = 3 shows a slightly existing joint parameter estimation and signal detectiethm
higher probability of correct detection than that/af = 4.  ods.
The results suggest that without computing ML estimates for

all candidate models, the proposed algorithm has compara- 7. REFERENCES
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Fig. 3. Probability of correct detection.
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