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ABSTRACT our method. In Section 4, simulations are carried out iniorde

In previous works [7, 8], we proposed source separatiof illustrate the V|ab|I|ty_of the proposal. Emally, in Sin
methods for a simplified version of the Nicolsky-Eisenman® W€ State our conclusions and perspectives.

(NE) model, which is related to a chemical sensing applica-
tion. In the present paper, we provide a method able to deal 2. PROBLEM STATEMENT

with the complete NE model. Basically, such a model cann analytical chemistry, a relevant problem is to estimhte t

be seen as a composition of a non-diagonal nonlinear trangyolution of the concentrations of several ions in a sokutio
formation followed by a diagonal nonlinear transformation An inexpensive and practical approach is based on the use
i.e. a set of component-wise functions. The basic idea besf potentiometric sensors, such as glass-electrodes and io
hind the developed technique is to estimate the parameiters gensitive field-effect transistors (ISFET). Basicallyg gens-
these two stages in a separate fashion by using a prior knowhg mechanism in this sort of sensor is due to the dependence
edge of the sources, namely the fact that one of the sourcesthe potential difference between two electrodes on the co

is constant during a certain period of time. Simulationsstt centration of a target ion [9]. Unfortunately, there is a-pro

the viability of the proposed technique. nounced lack of selectivity behind this principle, i.e. -
erated potential difference in the sensor can also depend on
1. INTRODUCTION other interfering ions present in the solution.

. : A very common approach to deal with the interference
The problem of blind source separation (BSS) concemns thg,pjem is to perform a calibration of the chemical sensor by

retrieval of an unknown set of source signals by using only,qjn, samples from a known database [9]. However, there
samples that are mixtures of these original signals. Tlsaae i are two major difficulties in such an approach: 1) the acqui-

great number of methods for the situation in which the MiX;in of training samples may be time-demanding and 2) this
ing process is linear. However, it seems that in some applic

i the I imation i t suitabl d Zalibration procedure must be performed from time to time
lons the linear approximation IS not sultablé and, as a Cory,,q 1 the sensors drift. In this context, an approach fodinde

sequence, it becomes necessary to design source separa%%rray of chemical sensors and on BSS methods emerges as
methods that take the nonlinearity of the model into account » ~weactive alternative. since. in this case. the esiimatt
The main problem in the nonlinear case is that the ubiquitoug, o e\ olution of the concentrations can be done by using only

tool for performing source separation, the independent comp e sensors responses, that is, without conducting Si@etvi
ponent analysis (ICA), does not work in a general S'tuat'oqearning with a known c]ata set’

[11‘1t’hlZ].t I?. <3tfche|ryv8rds, tgere are Cﬁsﬁs. mt;vhlch the re@f?ver Although very general, BSS techniques usually require a
?CA eds aus ";a n epten t?]nce, W ICt' IS f(ihvery esse ceh arametric description of the mixing model. In our cases thi
» JOES not guarantee the separation of IN€ Sources Wnelk, mation can be found on the classical model of Nicolsky-

the mixture model is nonlinear. In view of this limitation, a Eisenman (NE) [9], which provides a simple and yet ade-
more reasonable approach is to consider constrained m'X'QﬂJate description O’f the potentiometric sensors. Accardin

systems as, for example, post-nonlinear (PNL) mixture} [12,; is model, the response of théh sensor is given by:
and linear-quadratic mixtures [10]. '

In recent papers [3, 8], the problem of BSS in a particu- kS
lar class of nonlinear systems related to a chemical sensing Xi(t) = ci+dilog (3 O+ > ajsit) )> (1)
application was investigated. For instance, we developed i INES

[7, 8] source separation methods for estimating the concengaret corresponds to the time index(t) ands;(t) denote
trations of ions in a solution when the valences of these i0N§,o concentration of the target ion and of theJ concentration
are different. In our first works, we considered a simplifiedyt it interfering ion, respectivelyz andz; denote the
version of the mixing model that is pertinent only in the 8t 5ence of the ionsand j, respectively. The selective coef-
tions where the sensors present a Nernstian response_rﬁlS].ﬂCientsai. model the interference processandd; are con-

the present work, by relying on an additional assumption 0Ry, s that depend on some physical parameters. Note that
the sources, we extend our solution to the complete modeyhen the ions have the same valence, then the model (1) can

which permits us to work in more realistic situations. Ourpe seen as a particular case of the class of PNL systems, as
work will be presented as follows: in Section 2 we 'mmd“ceqescribed in [3].

the problem. After that, in Section 3, we expose the basics of |y this work, we are interested in the situation where the
Leonardo Tomazeli Duarte would like to thank the National @olfor valences are dlﬁerenZ(# Zj)' In view of the toughness of

Scientific and Technological Development (CNPg-Brazil) fonding his ~ the resulting model, we investigate only the case with two
PhD research. sources. Also, the parametersnay be not considered, since
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they represent concentrations. Finally, assumption 4 stat
knowledge of the ions’ valences. Actually, this informatio
is available since the main interfering ions, and so their va
lences, are known in advance.

Nonlinear
Mixing

3.1 Review of our solution for a simplified version of (2)

When the component-wise functions in (2) are known in ad-
vance, the mixing model becomes

Mixing Process Separating System

Figure 1: The Nicolsky-Eisenman model.
put) = sut) +as)X

1 .
_ o t) = t) 4+ ap1s(t)k
they only introduce an ambiguity with respect to the sources P2(t () +aas ()
mean value. Therefore, the obtained mixing model can b order to retrieves, we adopted [7] the following recurrent

3)

described as: network as separating system:
x(t) = dulog (pa(t) ) = dlog (su(t) +aszse (1)) i(n+1) = paft) ~wizya(n)
A @) D = ot 1 @)
Xz(t)=dzlog(pz(t)) = dzlog (SZ(t)‘f'alel(t)R) Ya(n+1) = pa(t) = Warya(n)

_ o o where the vectorsr = [wi> Wo1)" andy (n) = [y1(n) y2(n)]"
wherek = z;/7,. As illustrated in Fig. 1, this mixing model genote the parameters to be adjusted and the system outputs
is composed of two stages, being the first one a particuladt time n, respectively. For a given sample of the mixtures
nonlinear mapping that depends on the valences of the targgy, (t) p2(t)]T, and for a given valuev, the system outputs
ions and the second one a pair of nonlinear component-wisge gbtained after the convergence of the dynamics (4).
functions parametrized id; . As it will be clarified in the In order to adjust the parametessin (4), we proposed
sequel, the proposed method treats these two stages in a sef}-the following learning rule that minimizes the mutua# in
arate way. formation of the vectoy:

3. PROPOSED METHOD dy T

A natural strategy to perform BSS on the model (2) is to W w-HE { ow B"(Y)}’ ®)
adopt the two-stage separating system shown in Fig. 1. The

first stage is composed of exponential component-wise funavhereu denotes the learning rat, (y) is the score function
tions exgx;/d;"), whereas the second one should provide alifference vector associated with the random varigbénd
non-diagonal mapping able to counterbalance the effeets iYy s the Jacobian of (4) with respectta

troduced by the first stage of the mixing system. In [7, 8], we”"

investigated source separation methods for this first stade 3.2 An approach for inverting the component-wise func-
we assumed that the component-wise functions were knowons

in advance. In fact, this situation is realistic only wheg th | . h | . fth
sensors have a Nernstian response, given that in such a c%%w' et us turn our attention to the complete version of the

the parameters; are known in advance. m_odel. The following parametri_c model can be consid-
In the sequel, we will present a brief review of our previ- €r€d in the first stage of the separating system

ous works. Then, we will detail the main contribution of this xu(t)

paper which is related to the estimation of the component- et) = exp( g~

wise functions, i.e., of the parameteks With this new step, &) = exp %a(t)

it becomes possible to develop a complete source separation &

method for the model described in (2). During our develop-

ment, the following assumptions are considered: whered; are the parameters to be adjusted. .
A first natural approach to adapt the separating system

Assumption 1 The sources are statistically independent; would be to develop an ICA algorithm to find the parameters
{df,d;, w12, wo1}. In other words, we could seek a set of pa-
Assumption 2 The sources are positive and bounded, i.e,  rameters that optimizes a functional associated with the st
s(t) € [§", 9], where §™ > §"" > 0, tistical independence, such as the mutual information. How
ever, it would be tough to develop a gradient rule in this case
given that the separating system is composed of a nonlin-

(6)

Assumption 3 The system expressed in (2) is invertible in

the region given by [S{*", S/ x [, S=; ear dynamic system and, therefore, there would be a risk of
Assumption 4 k is known and takes only positive integer instability during the learning phase. Besides this pcatti
values; problem, there is a crucial theoretical point that should be

addressed: is the considered mixing model separablesi.e.,
In the context of the ion sensing application, assumptiorthe recovery of the statistical independence enough toessu
1 is equivalent to consider that there is no chemical reacsource separation? We do not have such an answer, but re-
tion between the ions. Concerning the assumptions 2 and 8ent studies [12] suggest that for nonlinear transformatio
our separation methods would work in a predefined range dike the one dealt with here (2), it is necessary to consider
concentrations, as is usual in commercial sensors. Furthgprior information other than independence to achieve sourc
more, it is quite natural to consider positive sources, esincseparation.
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In view of the aforementioned problems, we believe thatll the coefficients exceppy in (11) are null. In this situ-
it is more reasonable to consider a two-step approach, iation, the following solution(d; = Dd;,d; = Dd>), where
which the component-wise functions are firstly estimated is a constant, also gives a polynomial of oréealthough
and, then, the recurrent system is trained. The price to bdoes not correspond to our desired solution. Indeed, one of
paid is that we need the following additional assumption: the reasons behind assumption 2 is exactly to avoid this situ

) ) ] . ation by considering only positive sources.
Assumption 5 Thereis, at least, a period of time where one, To implement our idea, we must define a way to check if a
and only one, of the sources has zero-variance. set of points in thée;, &) plane corresponds to a polynomial
. . . . . of orderk. This can be done by defining a cost function as the
In view of assumption 5, if we consider, for instance, thal

s1(t) takes a constant val (whereS, € [, S ) in & tmean square of the residuals resulting from the regression o

. : : . the set of samplé(ey(t),ex(t))}N ; (beingN the number of
given time window, then, according to (2), we have samples) through a polynomiatd of order In mathematical

terms, this cost function can be expressed as

put) = 51+a1232(t)1k @)
pe(t) = S(t)+anS | k N\’
> miny <e1<t> Y (ez(t))'> , (12)
From this expression, it is not difficult to see that di% i=
Lk wherea; correspond to theth regression coefficient.
p1(t) = St +a12(p2(t) —a21S))" (8) In order to gain more insight, let us substitute (11) in (12),
. ) . which gives

Hence, under such an assumption, (8) is a polynomial of or-
derk in the (p1, p2) plane. Our idea is based on this fact, in d 2
the sense that this polynomial function is lost after thdiapp ) k Gl K i
cation of the component-wise functions and, thus, we may 51"(?2 Zﬁ)d)i (e2(t)%2 | - Z)ai (e2t) | - (13)
invert the log functions by searching a dek,d;} that re- 172 i= i=

stores a polynomial in thée;, ) plane. In the sequel, we

shall detail this idea. . One may note that this expression is a nonlinear function
Firstly, let us describe the mapping between(thg p2)  with respect to the parametefd;,d;}. Moreover, accord-

and (e1,&) planes. By considering (2) and (7), one caning to equation (11), for a given sample at titnénere is an

rewrite (6) as: underlying relation betweeey (t) andey(t), which in turn

4 makes the regression coefficierts nonlinearly dependent

_ dilog(pi(t)) _ @ on the parameters to be optimized. As a consequence, it be-
alt) = exp( di ) =put) dl ) (9)  comes difficult to obtain the derivatives of this functiordan
t) = ex (dzlog(pz(t))) . (t)i therefore, to develop a gradient-based optimization ntetho
€ - P d =P An alternative approach to optimize (12) can be found

] ] ) on the so-called evolutionary techniques. Briefly, thissla
The next step of our study is to find the relation betweeryf algorithms performs a searching procedure that is based
the data in theey, &) plane. As stated by (8), there is a poly- on the notion of population, i.e., it deals with a set of possi
nomial relation in the ps, p2) plane, which can be expressed ple solutions (individuals). At each iteration, some peséu
by tion (mutation and recombination, for instance) is introg
k i on the population and a group of individuals is selected to
pa(t) = 'Zﬁ¢i p2(t)', (10)  continue in the population of the next iteration (usuahe t
1= selected individuals are the ones with higher fitness, which
where the coefficientg; can be determined by the binomial is calculated through the cost function). The major benefit
expansion of (8). After a straightforward development conbrought by an evolutionary method to our problem is that no
sidering (9) and (10), the following expression is obtained information about the derivatives is needed, since thecsele
tion stage is based only on the evaluation of the cost functio
dy which, for our problem, is a straightforward task.

k di. | df
_ ) !
et) = [ giea(t) 2] ’ (11) 3.2.1 Detection of zero-variance periods

The idea described in the last section works under the as-

As stated above, our initial idea to firdf andd; is  sumption that there is a time window in which one of the
based on the recovery of a polynomial curve of orklén  sources does not vary. Evidently, if a blind scenario is®nvi
the (e1,e) plane. In order to verify the viability of our ap- aged, then one should be able to detect this “silent peritd”.
proach, we need to investigate the following question: foipossible way to perform this task is to consider the problem
what values ofd] andd; the function (11) is a polynomial from a geometric standpoint. Given that the mixing model
of orderk? At a first sight, it is clear that when the optimum is invertible and the sources are supposed bounded, the bor-
solution(d; = dy,d; = dy) is achieved, then that expression ders of the distribution in théx;,x2) plane corresponds to
results in a polynomial curve in tHey, e2) plane. the situation in which one of the source is constant. There-

However, there is a particular situation where a polynofore, at least in an ideal situation, we could detect thensile
mial curve is obtained although the mapping (9) is still non-periods by estimating the borders of the distribution of the
linear. In fact, wherg; is null, then we can see from (8) that mixtures, in the same way as performed in [2]. Note that this
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_ Mwellmatn Table 1: Algorithm
1 4
O'B’\\«M 1. Detection of silent periods
0 e oo om0 en o0 e om0 e Estimate the mutual information between the
‘ ‘ _ Souweet ‘ ‘ mixturesx; andx; for a moving-time window,
1 e Select the time window in which the mutual
o.s—MMMWWMMM information is maximum.
95 0 a0 o s oo o0 a0 o0 2. Estimation of the component-wise functions.
‘ . souce2 ‘ ‘ e For the selected time window, minimize ex-
! ’ pression (12) with respect tj andd;.
osji M | 3. Training the recurrent network
0 200 a0 400 50 600 700 800 900 o Determine the parametevs; of (4) through
the algorithm (5). The inputs of the recurrent
network ares .
Figure 2: Mutual information between the mixtures (a) an

corresponding sources (b) (c).

strategy works even when the assumption 5 is not met. Un-

fortunately, this procedure is difficult to implement sirite

demands a very accurate estimate of the borders, which may

be difficult to achieve when the number of samples is small. 0 200 400 600 800 1000
A second approach to search the silent periods is based on

the fact that when one of the sources is constant, each sensor

response corresponds to a deterministic function of theesam

random variable, i.ex; = g1(S2) andx, = gx(sp). Therefore,

we can argue that such situation is the one with maximum

(nonlinear) correlation between the sensors and, given tha ‘ ‘ |

we may try to identify the silent periods by searching time 0 200 400 600 800 1000

windows for which a measure of correlation is maximized.

This idea has already been developed for linear source sep- i

aration [6] and, in this case, the silent periods are found by Figure 3: Sources.

observing the second-order correlation measure. In o@, cas

we deal with a nonlinear model and, as consequence, a mea- . . . .

sure able to detect nonlinear dependences must be employé’a}(’ie opt-aiNet algorithm. This evolutionary method has been

With this purpose in mind, we consider the mutual informa-Proven to be efficient in signal processing applications (se
tion between the mixing signals. [1], for instance). In addition to its robustness to locahmi

The mutual information of two continuous random vari- M&, the opt-aiNet only needs zero-order information, Wwhic

; ; : i fore, is a very interesting feature for alo-pr
ables lies on the interval9 | (x1, ) < 4+, being zerowhen 2 discussed before, is ¢ : :
x, andx, are statistically iEldepe)ndent, and tending to in-lem. The technical details of this method can be found in [5].

finity when there is a deterministic relation between these

variables. Therefore, we can find the silent periods by look- 4. SIMULATION RESULTS

ing at the time windows for which the mutual information To assess the performance of the algorithm described in

is maximized. In fact, it seems more practical to maximizeTab. 1, we simulated the problem of detecting the i6as"

a normalized version of the mutual information defined asnd Nat through an array of two sensors (each onhe has a

G(x1,%2) = \/1—exp(—2I (x1,%)), given that its maximum different ion as target). For that, we consider the parame-

value is one and occurs when there is a deterministic relaersa;, = 0.79 anday; = 0.40, which were taken from [13].

tionship betweemn andx;. ‘Also, we have assumed that both sensors have a perfect Ner-
To illustrate the idea of the last paragraph, we present igtian response [9], i.ed; = 0.0129 andd, = 0.0258. The

Fig. 2 the evolution of the normalized mutual information efficacy of the obtained solution for each source was quanti-

between the sensors response (estimated through a time wiied according to the following index:

dow of length 151) and the respectively sources. Note that

the maximum of the mutual information occurs exactly for E{§}

time windows containing a constant source. SR =10log W

—Yi

Thus,SR= 0.5(9R; + S Ry) defines a global index.

We can summarize the complete separation algorithm in Regarding the parameters of the algorithm, a set of 1000
Tab.1. Concerning the first step, we adopted the mutual irsamples was considered. The detection of the silent periods
formation estimator proposed in [4]. As already discusseds performed by estimating the mutual information for a win-
the optimization of (12) in the second stage can be carriedow of a length of 151 samples. Actually, it is difficult to
out through evolutionary methods. In this work, we choseachieve a reliable estimation of the mutual informatiorhwit

[ca®'1 (M)

(14)

3.3 Description of the complete algorithm
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Figure 4: Mixtures.
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Figure 5: Retrieved sources.

a smaller number of samples. Finally, concerning the train-

some real experiments to investigate the applicabilitywsf o
method in a real problem. By proceeding this way, we will
be able to address several questions in more details ag; for i
stance, the study of the noisy case, starting with the proble
of modeling the noise in this sort of application.

(1]

(2]

(3]

[4]

(5]

(6]

(7]

ing of the recurrent network, the number of iterations was

1500 and the learning rate was= 0.02.

Under the described scenario and with the two sources[s]
shown in Fig. 3, our method has achieved the following

performanceS R; = 40.52, SR, = 3827 andSI R = 39.39.

Such a result attests that our proposal does well in this case
as can be confirmed by looking at the mixing signals in Fig. [9]

4 and at the retrieved sources in Fig. 5.

5. CONCLUSIONS AND PERSPECTIVES

[10]

In this work, we have proposed a source separation method

for the NE model, which is related to a chemical sensing ap ]
plication. Under the assumption that one of the sources does

not vary during a period of time, it became possible to es-
timate the component-wise functions, which correspond to
the second stage of the NE model. By joining this stage té12]
our previous solutions, we could define a complete separa-

tion framework. In order to verify the efficacy of our pro-

posal, we conducted some experiments considering a set of
parameters taken from the literature. The obtained saistio [13]
highlight that our method is a promising one to the applica-

tion in mind.

There are several perspectives for this work. A first one
is to investigate the extension of our method for the situa-
tion with more than two sources. Also, we intent to conduct
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