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ABSTRACT

In previous works [7, 8], we proposed source separation
methods for a simplified version of the Nicolsky-Eisenman
(NE) model, which is related to a chemical sensing applica-
tion. In the present paper, we provide a method able to deal
with the complete NE model. Basically, such a model can
be seen as a composition of a non-diagonal nonlinear trans-
formation followed by a diagonal nonlinear transformation,
i.e. a set of component-wise functions. The basic idea be-
hind the developed technique is to estimate the parameters of
these two stages in a separate fashion by using a prior knowl-
edge of the sources, namely the fact that one of the sources
is constant during a certain period of time. Simulations attest
the viability of the proposed technique.

1. INTRODUCTION

The problem of blind source separation (BSS) concerns the
retrieval of an unknown set of source signals by using only
samples that are mixtures of these original signals. There is a
great number of methods for the situation in which the mix-
ing process is linear. However, it seems that in some applica-
tions the linear approximation is not suitable and, as a con-
sequence, it becomes necessary to design source separation
methods that take the nonlinearity of the model into account.
The main problem in the nonlinear case is that the ubiquitous
tool for performing source separation, the independent com-
ponent analysis (ICA), does not work in a general situation
[11, 12]. In other words, there are cases in which the recovery
of the statistical independence, which is the very essence of
ICA, does not guarantee the separation of the sources when
the mixture model is nonlinear. In view of this limitation, a
more reasonable approach is to consider constrained mixing
systems as, for example, post-nonlinear (PNL) mixtures [12]
and linear-quadratic mixtures [10].

In recent papers [3, 8], the problem of BSS in a particu-
lar class of nonlinear systems related to a chemical sensing
application was investigated. For instance, we developed in
[7, 8] source separation methods for estimating the concen-
trations of ions in a solution when the valences of these ions
are different. In our first works, we considered a simplified
version of the mixing model that is pertinent only in the situa-
tions where the sensors present a Nernstian response [13]. In
the present work, by relying on an additional assumption on
the sources, we extend our solution to the complete model,
which permits us to work in more realistic situations. Our
work will be presented as follows: in Section 2 we introduce
the problem. After that, in Section 3, we expose the basics of

Leonardo Tomazeli Duarte would like to thank the National Council for
Scientific and Technological Development (CNPq-Brazil) forfunding his
PhD research.

our method. In Section 4, simulations are carried out in order
to illustrate the viability of the proposal. Finally, in Section
5, we state our conclusions and perspectives.

2. PROBLEM STATEMENT

In analytical chemistry, a relevant problem is to estimate the
evolution of the concentrations of several ions in a solution.
An inexpensive and practical approach is based on the use
of potentiometric sensors, such as glass-electrodes and ion-
sensitive field-effect transistors (ISFET). Basically, the sens-
ing mechanism in this sort of sensor is due to the dependence
of the potential difference between two electrodes on the con-
centration of a target ion [9]. Unfortunately, there is a pro-
nounced lack of selectivity behind this principle, i.e. thegen-
erated potential difference in the sensor can also depend on
other interfering ions present in the solution.

A very common approach to deal with the interference
problem is to perform a calibration of the chemical sensor by
using samples from a known database [9]. However, there
are two major difficulties in such an approach: 1) the acqui-
sition of training samples may be time-demanding and 2) this
calibration procedure must be performed from time to time
due to the sensors drift. In this context, an approach founded
on array of chemical sensors and on BSS methods emerges as
an attractive alternative, since, in this case, the estimation of
the evolution of the concentrations can be done by using only
the sensors responses, that is, without conducting supervised
learning with a known data set.

Although very general, BSS techniques usually require a
parametric description of the mixing model. In our case, this
information can be found on the classical model of Nicolsky-
Eisenman (NE) [9], which provides a simple and yet ade-
quate description of the potentiometric sensors. According
to this model, the response of thei-th sensor is given by:

xi(t) = ci +di log
(

si(t)+ ∑
j, j 6=i

ai js j(t)
zi
z j

)

, (1)

wheret corresponds to the time index;si(t) ands j(t) denote
the concentration of the target ion and of the concentration
of the j-th interfering ion, respectively.zi andz j denote the
valence of the ionsi and j, respectively. The selective coef-
ficientsai j model the interference process;ci anddi are con-
stants that depend on some physical parameters. Note that
when the ions have the same valence, then the model (1) can
be seen as a particular case of the class of PNL systems, as
described in [3].

In this work, we are interested in the situation where the
valences are different (zi 6= z j). In view of the toughness of
the resulting model, we investigate only the case with two
sources. Also, the parametersci may be not considered, since
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Figure 1: The Nicolsky-Eisenman model.

they only introduce an ambiguity with respect to the sources
mean value. Therefore, the obtained mixing model can be
described as:

x1(t) = d1 log
(

p1(t)
)

= d1 log
(

s1(t)+a12s2(t)k
)

x2(t) = d2 log
(

p2(t)
)

= d2 log
(

s2(t)+a21s1(t)
1
k

) , (2)

wherek = z1/z2. As illustrated in Fig. 1, this mixing model
is composed of two stages, being the first one a particular
nonlinear mapping that depends on the valences of the target
ions and the second one a pair of nonlinear component-wise
functions parametrized indi . As it will be clarified in the
sequel, the proposed method treats these two stages in a sep-
arate way.

3. PROPOSED METHOD

A natural strategy to perform BSS on the model (2) is to
adopt the two-stage separating system shown in Fig. 1. The
first stage is composed of exponential component-wise func-
tions exp(xi/d∗i ), whereas the second one should provide a
non-diagonal mapping able to counterbalance the effects in-
troduced by the first stage of the mixing system. In [7, 8], we
investigated source separation methods for this first stageand
we assumed that the component-wise functions were known
in advance. In fact, this situation is realistic only when the
sensors have a Nernstian response, given that in such a case
the parametersdi are known in advance.

In the sequel, we will present a brief review of our previ-
ous works. Then, we will detail the main contribution of this
paper which is related to the estimation of the component-
wise functions, i.e., of the parametersdi. With this new step,
it becomes possible to develop a complete source separation
method for the model described in (2). During our develop-
ment, the following assumptions are considered:

Assumption 1 The sources are statistically independent;

Assumption 2 The sources are positive and bounded, i.e,
si(t) ∈ [Smin

i ,Smax
i ], where Smax

i > Smin
i > 0;

Assumption 3 The system expressed in (2) is invertible in
the region given by [Smin

1 ,Smax
1 ]× [Smin

2 ,Smax
2 ];

Assumption 4 k is known and takes only positive integer
values;

In the context of the ion sensing application, assumption
1 is equivalent to consider that there is no chemical reac-
tion between the ions. Concerning the assumptions 2 and 3,
our separation methods would work in a predefined range of
concentrations, as is usual in commercial sensors. Further-
more, it is quite natural to consider positive sources, since

they represent concentrations. Finally, assumption 4 state a
knowledge of the ions’ valences. Actually, this information
is available since the main interfering ions, and so their va-
lences, are known in advance.

3.1 Review of our solution for a simplified version of (2)

When the component-wise functions in (2) are known in ad-
vance, the mixing model becomes

p1(t) = s1(t)+a12s2(t)k

p2(t) = s2(t)+a21s1(t)
1
k

. (3)

In order to retrievesi, we adopted [7] the following recurrent
network as separating system:

y1(n+1) = p1(t)−w12y2(n)k

y2(n+1) = p2(t)−w21y1(n)
1
k

, (4)

where the vectorsw = [w12 w21]
T andy(n) = [y1(n) y2(n)]T

denote the parameters to be adjusted and the system outputs
at timen, respectively. For a given sample of the mixtures
[p1(t) p2(t)]T , and for a given valuew, the system outputs
are obtained after the convergence of the dynamics (4).

In order to adjust the parametersw in (4), we proposed
[8] the following learning rule that minimizes the mutual in-
formation of the vectory:

w←w−µE

{

∂y

∂w

T

βy(y)

}

, (5)

whereµ denotes the learning rate,βy(y) is the score function
difference vector associated with the random variabley and
∂y

∂w
is the Jacobian of (4) with respect tow.

3.2 An approach for inverting the component-wise func-
tions

Now, let us turn our attention to the complete version of the
NE model. The following parametric model can be consid-
ered in the first stage of the separating system

e1(t) = exp
(

x1(t)
d∗1

)

e2(t) = exp
(

x2(t)
d∗2

) , (6)

whered∗i are the parameters to be adjusted.
A first natural approach to adapt the separating system

would be to develop an ICA algorithm to find the parameters
{d∗1,d∗2,w12,w21}. In other words, we could seek a set of pa-
rameters that optimizes a functional associated with the sta-
tistical independence, such as the mutual information. How-
ever, it would be tough to develop a gradient rule in this case
given that the separating system is composed of a nonlin-
ear dynamic system and, therefore, there would be a risk of
instability during the learning phase. Besides this practical
problem, there is a crucial theoretical point that should be
addressed: is the considered mixing model separable, i.e.,is
the recovery of the statistical independence enough to assure
source separation? We do not have such an answer, but re-
cent studies [12] suggest that for nonlinear transformations
like the one dealt with here (2), it is necessary to consider
prior information other than independence to achieve source
separation.
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In view of the aforementioned problems, we believe that
it is more reasonable to consider a two-step approach, in
which the component-wise functions are firstly estimated
and, then, the recurrent system is trained. The price to be
paid is that we need the following additional assumption:

Assumption 5 There is, at least, a period of time where one,
and only one, of the sources has zero-variance.

In view of assumption 5, if we consider, for instance, that
s1(t) takes a constant valueS1 (whereS1 ∈ [Smin

i ,Smax
i ] ) in a

given time window, then, according to (2), we have

p1(t) = S1 +a12s2(t)k

p2(t) = s2(t)+a21S
1
k
1

. (7)

From this expression, it is not difficult to see that

p1(t) = S1 +a12(p2(t)−a21S
1
k
1 )k. (8)

Hence, under such an assumption, (8) is a polynomial of or-
derk in the(p1, p2) plane. Our idea is based on this fact, in
the sense that this polynomial function is lost after the appli-
cation of the component-wise functions and, thus, we may
invert the log functions by searching a set{d∗1,d∗2} that re-
stores a polynomial in the(e1,e2) plane. In the sequel, we
shall detail this idea.

Firstly, let us describe the mapping between the(p1, p2)
and (e1,e2) planes. By considering (2) and (7), one can
rewrite (6) as:

e1(t) = exp
(

d1 log(p1(t))
d∗1

)

= p1(t)
d1
d∗1

e2(t) = exp
(

d2 log(p2(t))
d∗2

)

= p2(t)
d2
d∗2

. (9)

The next step of our study is to find the relation between
the data in the(e1,e2) plane. As stated by (8), there is a poly-
nomial relation in the(p1, p2) plane, which can be expressed
by

p1(t) =
k

∑
i=0

ϕi p2(t)
i, (10)

where the coefficientsϕi can be determined by the binomial
expansion of (8). After a straightforward development con-
sidering (9) and (10), the following expression is obtained:

e1(t) =

[

k

∑
i=0

ϕie2(t)
d∗2
d2

i

]

d1
d∗1

. (11)

As stated above, our initial idea to findd∗1 and d∗2 is
based on the recovery of a polynomial curve of orderk in
the (e1,e2) plane. In order to verify the viability of our ap-
proach, we need to investigate the following question: for
what values ofd∗1 andd∗2 the function (11) is a polynomial
of orderk? At a first sight, it is clear that when the optimum
solution(d∗1 = d1,d∗2 = d2) is achieved, then that expression
results in a polynomial curve in the(e1,e2) plane.

However, there is a particular situation where a polyno-
mial curve is obtained although the mapping (9) is still non-
linear. In fact, whenS1 is null, then we can see from (8) that

all the coefficients exceptϕk in (11) are null. In this situ-
ation, the following solution(d∗1 = Dd1,d∗2 = Dd2), where
D is a constant, also gives a polynomial of orderk although
does not correspond to our desired solution. Indeed, one of
the reasons behind assumption 2 is exactly to avoid this situ-
ation by considering only positive sources.

To implement our idea, we must define a way to check if a
set of points in the(e1,e2) plane corresponds to a polynomial
of orderk. This can be done by defining a cost function as the
mean square of the residuals resulting from the regression of
the set of sample{(e1(t),e2(t))}N

t=1 (beingN the number of
samples) through a polynomial of orderk. In mathematical
terms, this cost function can be expressed as

min
d∗1,d∗2

∑
t

(

e1(t)−
k

∑
i=0

αi (e2(t))
i

)2

, (12)

whereαi correspond to thei-th regression coefficient.
In order to gain more insight, let us substitute (11) in (12),

which gives

min
d∗1,d∗2

∑
t







[

k

∑
i=0

ϕi(e2(t))
d∗2
d2

i

]

d1
d∗1
−

k

∑
i=0

αi (e2(t))
i







2

. (13)

One may note that this expression is a nonlinear function
with respect to the parameters{d∗1,d∗2}. Moreover, accord-
ing to equation (11), for a given sample at timet there is an
underlying relation betweene1(t) and e2(t), which in turn
makes the regression coefficientsαi nonlinearly dependent
on the parameters to be optimized. As a consequence, it be-
comes difficult to obtain the derivatives of this function and,
therefore, to develop a gradient-based optimization method.

An alternative approach to optimize (12) can be found
on the so-called evolutionary techniques. Briefly, this class
of algorithms performs a searching procedure that is based
on the notion of population, i.e., it deals with a set of possi-
ble solutions (individuals). At each iteration, some perturba-
tion (mutation and recombination, for instance) is introduced
on the population and a group of individuals is selected to
continue in the population of the next iteration (usually, the
selected individuals are the ones with higher fitness, which
is calculated through the cost function). The major benefit
brought by an evolutionary method to our problem is that no
information about the derivatives is needed, since the selec-
tion stage is based only on the evaluation of the cost function,
which, for our problem, is a straightforward task.

3.2.1 Detection of zero-variance periods

The idea described in the last section works under the as-
sumption that there is a time window in which one of the
sources does not vary. Evidently, if a blind scenario is envis-
aged, then one should be able to detect this “silent period”.A
possible way to perform this task is to consider the problem
from a geometric standpoint. Given that the mixing model
is invertible and the sources are supposed bounded, the bor-
ders of the distribution in the(x1,x2) plane corresponds to
the situation in which one of the source is constant. There-
fore, at least in an ideal situation, we could detect the silent
periods by estimating the borders of the distribution of the
mixtures, in the same way as performed in [2]. Note that this
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Figure 2: Mutual information between the mixtures (a) and
corresponding sources (b) (c).

strategy works even when the assumption 5 is not met. Un-
fortunately, this procedure is difficult to implement sinceit
demands a very accurate estimate of the borders, which may
be difficult to achieve when the number of samples is small.

A second approach to search the silent periods is based on
the fact that when one of the sources is constant, each sensor
response corresponds to a deterministic function of the same
random variable, i.e.,x1 = g1(s2) andx2 = g2(s2). Therefore,
we can argue that such situation is the one with maximum
(nonlinear) correlation between the sensors and, given that,
we may try to identify the silent periods by searching time
windows for which a measure of correlation is maximized.
This idea has already been developed for linear source sep-
aration [6] and, in this case, the silent periods are found by
observing the second-order correlation measure. In our case,
we deal with a nonlinear model and, as consequence, a mea-
sure able to detect nonlinear dependences must be employed.
With this purpose in mind, we consider the mutual informa-
tion between the mixing signals.

The mutual information of two continuous random vari-
ables lies on the interval 0≤ I(x1,x2) < +∞, being zero when
x1 and x2 are statistically independent, and tending to in-
finity when there is a deterministic relation between these
variables. Therefore, we can find the silent periods by look-
ing at the time windows for which the mutual information
is maximized. In fact, it seems more practical to maximize
a normalized version of the mutual information defined as
ς(x1,x2) =

√

1−exp(−2I(x1,x2)), given that its maximum
value is one and occurs when there is a deterministic rela-
tionship betweenx1 andx2.

To illustrate the idea of the last paragraph, we present in
Fig. 2 the evolution of the normalized mutual information
between the sensors response (estimated through a time win-
dow of length 151) and the respectively sources. Note that
the maximum of the mutual information occurs exactly for
time windows containing a constant source.

3.3 Description of the complete algorithm

We can summarize the complete separation algorithm in
Tab.1. Concerning the first step, we adopted the mutual in-
formation estimator proposed in [4]. As already discussed,
the optimization of (12) in the second stage can be carried
out through evolutionary methods. In this work, we chose

Table 1: Algorithm

1. Detection of silent periods
• Estimate the mutual information between the

mixturesx1 andx2 for a moving-time window.
• Select the time window in which the mutual

information is maximum.
2. Estimation of the component-wise functions.
• For the selected time window, minimize ex-

pression (12) with respect tod∗1 andd∗2.
3. Training the recurrent network
• Determine the parameterswi j of (4) through

the algorithm (5). The inputs of the recurrent
network areei.
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Figure 3: Sources.

the opt-aiNet algorithm. This evolutionary method has been
proven to be efficient in signal processing applications (see
[1], for instance). In addition to its robustness to local min-
ima, the opt-aiNet only needs zero-order information, which,
as discussed before, is a very interesting feature for our prob-
lem. The technical details of this method can be found in [5].

4. SIMULATION RESULTS

To assess the performance of the algorithm described in
Tab. 1, we simulated the problem of detecting the ionsCa2+

and Na+ through an array of two sensors (each one has a
different ion as target). For that, we consider the parame-
tersa12 = 0.79 anda21 = 0.40, which were taken from [13].
Also, we have assumed that both sensors have a perfect Ner-
stian response [9], i.e.,d1 = 0.0129 andd2 = 0.0258. The
efficacy of the obtained solution for each source was quanti-
fied according to the following index:

SIRi = 10log

(

E{s2
i }

E{(si− yi)
2}

)

. (14)

Thus,SIR = 0.5(SIR1 +SIR2) defines a global index.
Regarding the parameters of the algorithm, a set of 1000

samples was considered. The detection of the silent periods
is performed by estimating the mutual information for a win-
dow of a length of 151 samples. Actually, it is difficult to
achieve a reliable estimation of the mutual information with
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Figure 5: Retrieved sources.

a smaller number of samples. Finally, concerning the train-
ing of the recurrent network, the number of iterations was
1500 and the learning rate wasµ = 0.02.

Under the described scenario and with the two sources
shown in Fig. 3, our method has achieved the following
performanceSIR1 = 40.52, SIR2 = 38.27 andSIR = 39.39.
Such a result attests that our proposal does well in this case,
as can be confirmed by looking at the mixing signals in Fig.
4 and at the retrieved sources in Fig. 5.

5. CONCLUSIONS AND PERSPECTIVES

In this work, we have proposed a source separation method
for the NE model, which is related to a chemical sensing ap-
plication. Under the assumption that one of the sources does
not vary during a period of time, it became possible to es-
timate the component-wise functions, which correspond to
the second stage of the NE model. By joining this stage to
our previous solutions, we could define a complete separa-
tion framework. In order to verify the efficacy of our pro-
posal, we conducted some experiments considering a set of
parameters taken from the literature. The obtained solutions
highlight that our method is a promising one to the applica-
tion in mind.

There are several perspectives for this work. A first one
is to investigate the extension of our method for the situa-
tion with more than two sources. Also, we intent to conduct

some real experiments to investigate the applicability of our
method in a real problem. By proceeding this way, we will
be able to address several questions in more details as, for in-
stance, the study of the noisy case, starting with the problem
of modeling the noise in this sort of application.
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