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ABSTRACT time evolution of the phase posterior pdf given the future ob

In this paper we consider the iterative decoding of Chan_servations (backward pdf). These two pdf directly lead & th
nels with sl?tr(?ng phase noise. We propose to useg a rando mplete phase posterior pdf (given the past and the fubsre o

; ; : . Servations). Yet, the expressions giving the time evolfutib
discrete measure to estimate the phase posterior pdf giv ; . . )
the past observations (forward pdf) and another random di he forward and backward posterior pdf involve inextrieabl

. : . tegral calculations, and they cannot be directly expbhit
crete measure to estimate the phase posterior pdf given t ; ; A
future observations (backward pdf). The particle filteroalg Wo types of suboptimal methods exist to estimate these pdf.

rithm is used to recursively generate the supports in thee rel ON€ CONSISs in assuming that the pdf belongs to a parameter-

vant phase space area and recursively update the weights £&d family of functions [2]: the family of functions is chess
sociated to these supports. An estimation of the phase po 0 that an analytical solution of the integrals can k_)e renb_.chg
terior pdf given all the past and future observations is ther] "€ Other type of method, based on the phase discretization,
derived from the forward and backward measures. The reldS more efficient but requires a greater complexity: it con-
vance of our proposal is finally illustrated through simiglat ~ SIStS in dividing the phase stg 2m) into Q equispaced in-

of binary LDPC codes and QPSK modulation over a severfeTvals and transforming the integrals into discrete sushs [
Wiener-Levy phase noise with a standard deviatiooyoi= 6 | "€ phase posterior pdf are then replaced by probabilitsmas
degrees. Our algorithm is compared with a forward-backwarfHnctions on the discretized phase space and are recyrsivel
message passing algorithm performed over a trellis regulti COMPuted. Using a factor graph representation, such method
from the discretization of the phase. The proposed algarith ¢&n b€ seen as a forward backward message passing algorithm

leads to a a slight performance degradation compared to tgl- If Qis the number of phase states aidhe modulation
optimal treillis based method. size, the complexity of the trellis algorithm is in(RIQ<).

One solution to reduce this complexity is to assume that only
a few number of phase state transitRare possible between
1. INTRODUCTION two successive sampling times. The complexity of this "re-

Phase tracking has attracted an increasing interest imeshe duced Trellis” algorithm is then in MQR). _

digital communications. Since estimating jointly the phas In this paper, we propose to use two random discrete mea-
and the data is generally intractable, a number of suboptimgures (RDM) to estimate the phase posterior pdf given the
algorithms have been proposed using a phase estimator fdlast observations and the phase posterior pdf given theefutu
lowed by a data detector. observat_lons. These RDM are estimated only_ in the relev:_;mt
In order to improve the performance, one can use iterative e€9N€, using two Sequential Importance Sampling Resampling
timation : at each iteration, a phase estimation is perfdrme(SISR) algorithms, also known as Particle Filter (PF) algo-
using the soft channel decoder output from the previous estfithms [5]. The PF algorithm recursively generates the RDM
mation, and then the soft channel decoder input is calalilateSUPPOrts and update the RDM weights. An estimation of the
using the phase estimation. phase posterior pdf given all the past and future observatio

If the channel phase is constant during one frame, the Expet§ then derived from the forward and backward measures.
tation Maximisation (EM) algorithm [1] can be performed. This study follows some preliminary work presented in [6],
When the phase is varies during the frame, the EM aIgorithrMVhere the particle filter was used to calculate the forwart an

cannot be directly applied and we need to perform a slidingf@ckward messages of the message-passing algorithm. The
window version of the EM algorithm. use of particle filter for strong phase noise synchronizatio

Assuming that the phase variation statistics are known @y th~as lso proposed in [7], but the authors only used the PF to
receiver (Bayesian approach), it becomes possible to give acalculate a phase estimation, while we propose here to esti-

alytical expressions of the time evolution of the phase posate the phase posterior pdf.

terior pdf given the past observations (forward pdf) and thd he rest of the paper is organized as follow: the system model
is given in section 2, and the symbol posterior probability

The work of Nicolas Paul was supported by France Telecom R&D,  (for the decoder input) is calculated in section 3, as a func-
rue du general Leclerc, 92130 Issy les Moulineaux, France tion of the forward and backward phase posterior pdf. The
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trellis method and the particle filter method are respelgtive

described in subsections 3.1 and 3.2. Section 4 presents and ,

discusses the simulation results and section 5 draws the con p(cyr) = / p(Cx, Bk|r)d6
cluding remarks of this paper. 6k

= | Ck, K—1 KT d
2. SYSTEM MODEL /ek PGk, Bhlria-1,Ties 1, T A6k

Let {b }|—1... be a sequence of coded bits af&l}n-1. n its O / P(rk|Ck; Bk T1k—1, Tk 1K)
mapping to a M-PSK constellatiof”. Let {ck}k=1.. k be the 6k
transmitted sequence built frof@,} after N, pilot symbols X P(Ck, Bk|r1k—1,Tkr1: )6k
have been inserte)k = N+ Np). We consider the following
equivalent baseband complex system model: O /Gk p(rkck, 6k)
n=ae%+nc  k=1,.. K, (1) X P(Ck| Bk, T1k-1, Tkt 1K)
X P(6k|r1x—1,Tks1K )6k (7)

whereny is a complex circular gaussian noise with variance ! . . . .
02. We assume that the phase nofkecan be modelled by The first term of the integral in (7) is the complex circular

the following Wiener-Levy (random walk) process: gaussian pdf:
6= (B_1+0) mod 2T, ) p(rilce, ) = Az (1, cel™, o), (8)
A 2
whereA, is a white Gaussian noise with variangg. This ~Where./c(xm,0) = a7 ©XP{— 557 X —m|*}. The second
phase evolution model is a first order Markov process: termin (7) is equal to the symbol prior probability
1
P(6k|6k-1,---,60) = P(6k|6k-1). 3) p(ck|6k,T1k—1,Tki1K) = M 9)
This evolution model is symmetrical and one can write: (7) therefore becomes:
= - mod 2, 4 i
O= (O~ Biat) @ pladn 0 | Ae(ria@®,0)p(Bruc 1o ) (10)
P(6k|Bt-1, - - - k) = P(Ok|Bcr)- (5) _
) p(6k|rix—1,rkr1k) can be expressed as a function of the for-
(2) and (4) respectively represent the forward and backwar@ard posterior pdfp(6y|rix_1) and the backward posterior
phase evolution model. pdf p(B|ris1):
3. SYMBOL POSTERIOR PROBABILITY P(6|r1k—1,Tir1x) O P(rik-1, 1k | 6)

The decision problem is given by: E pgrk“:K|9k’r1:k‘1)p(rl:k‘l|9k>
p

1K | G) P(rix—1/6k)
O p(6k|rix—1) P(Bk|rKs1K), (11)

b, = argmaxp(b
! 9 by P(bilr) since givenby, rx 1k IS independent omryy_1, p(6k) is a

uniform pdf andp(ryx—1), P(rre1:k ), P(r1k—1,Tkr1k ) do not
:argnglax/e b(lby, 6]r)do Hopond grﬁk. do(rix-1), P(ris1x ), Pris-1, Tk
Equation (10) gives an analytical relationship between the
= arg max/ Z p(b,O|r)d6. (6)  continuous pdp(6k|rik_1,rk+1k) and the symbol posterior
b Jo b={bm}my probability. The phase discretization approach congisépt

proximating the continuous pgif{ 6k|r1x_1,rk+1x) by a dis-
This optimal solution is generally intractable and a subopt crete probability measure: the phase sgce2m) is divided
mal solution is to use an iterative estimation. At each #erainto Q equal intervalsy, of width %" and centetlg = %.

tion, a phase estimation is performed using the soft infermaconsequently, the continuous PREO| T 141, Tks 1K) IS Te-

tion bits provided by the channel decoder, and then the soffj5ced by the discrete probabiliti c - de-
information bits are calculated using the phase estimatiof}jned by:y P ePu(Bc€ @)la-1...Q

The soft information bit is given by (b)) = log( SEEE%B).
A(by) can be directly calculated from the set of symbol pos- Pu(k € @) £ p(6k € @yIr1k 1, Tkr1k)- (12)

terior probabilities{ p(ck = Slr) }sc 2, wherecy is the sym- i i i
bol which containdy,. To simplify the notation, symbdbis N.OW p(cir) can be derived fronp, with a discrete sum on

omitted andp(ck = Sr) is simply notedp(ck|r). Marginaliz- &

. . Q :
ing p(ck|r) on the phase paramet@rand applying the Bayes p(c|r) O z Ne(rk, k€%, 0) pu(6k € @). (13)
relation leads to: d=1
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As in (11), pu(6 € @) can be expressed as a function of the3.2. random discrete measure

forward posterior probabilitpr (6 € @) = p(6 € @ylrix-1)  we propose to approximate the two continuous pdf

and the backward posterior probabiljty(6 € @) = p(6c e P(6k|rix—1) andp(6k|ri: 1) with two random discrete mea-
Blric1k): sures (RDM){Gf(',)k,vT/(f?kfl} and {Géfk),vvé{l)(ﬂ} respectively.
{Gf(i}k,w(fi,)kfl} is also called a set of p(:lrticleéf@k being the

€ 0 € c@). 14 .
Pu(Bc € @) 0 pr(8 € @)po(6 < @) 14) particle supportanw??kf1 the particle weight [5]. The dif-

According to (11) and (13), the knowledgemf(6¢ € @) and  ference between the support indé) &nd the weight index
Po(6k € @) directly leads to the symbol posterior probabil- (k— 1) (resp. k+ 1)) in the forward (resp. backward) RDM
ity. Two methods are now presented to estimatef € @)  comes from the fact that we estimate a one-step prediction
and py(6« € @). In subsection 3.1 the classical trellis ap- posterior pdfp(6«|rix—1) (resp. p(6k|rk+1x)) and not the
proach is presented and in subsection 3.2 our approach basadine posterior pdp(6k|rix) (resp.p(6k|rkk) )-

on the RDM approximation is described. In these two sec-
tions{p(ck = X) }xc2 is the symbol probability provided by

the decoder output (from the previous iteration). Noart

PBldrs-1) ~ 3 W 1 5(6—6f, @)

3.1 trellis
Inthe trellis approach [P (6k € @;) andpp(6k € @) are re- Noart _
cursively computed for alj using the following relationship: P(BIrks1k)) ~ Z ~§J17i>(+15(9k _ 9é71k>). (18)
=1
6k € @) = p(6k € @y|rik_ ,
pr( @) pé Blrr-1) Npart is the number of particlesgv(f'?k_1 is the normalized
_ Z P(6k € @, 61 € @lrix 1) importan(i(;e weight at timé& associated with th((ie) particie
r=1 (6 — 6 ) denotes the Dirac function ifi = 6; and the
Q subscriptsf andb stand for "forward” and "backward”.
= Z P(6k € @lO-1€ @) We generate the supports and update the weights using the Se-
r= quential Importance Sampling Resampling (SISR) algorjthm
X P(6-1 € @rii-2,M-1) also known as Particle Filter (PF) algorithm [5]. For the-for

Q ward (resp. backward) algorithm, the particle supports are
O z P(6k € @|6—1€ @)P(rk-1/6k-1 € @) recursively generated using the first order Markov evotutio
r=1 model (2) (resp. (4)). It corresponds to the prior impor&anc
X Pi(Gk-1€ @), (15) function. Consequently, the particle weights are updated u
ing the observation likelihoods:

where the discrete transition probabiliid € @61 € @)
can be obtained by matching the moments of the discrete pdf

N () B ()] (i)
and the Gaussian phase difference pdf associated to thé mode forward PF: - wi | =wyy 1 P(ri/6 ), (19)
(2). p(rk-1/6-1 € @) is the observation likelihood, propor-
tional to S e 2 P(Ck = X) x A¢(re_1,xe% , ).
Equivalently, in the backward direction: backward PE: Wéjl)( _ WE)J;I)<+1p(rk|9t§,jk))7 (20)
Po(6k € @) = P(6k € @|ris1k) where the observation Iikelihoodsa(rk|9f(if() and p(rk|9é7jk>)
Q are calculated by marginalization on the transmitted symbo
= Zp(ek € @b € @) probabilities :
r=
X P(rei1lbher1 € @)po(Bir € @).  (16) :
p(rel6) = Y plok =x)Ae(rxe® a).  (21)

The complexity of recursively computing the forward and X

backward probabilities using (15) and (16) is ifiMIQ?). To _ ) ) )

reduce it, it is often assumed that the phase state tramsitid\ resampling step is added to avoid the particle degeneracy
probabilitiesp(6x € @6 1 € @) andp(6k € @/6i1 € @) and maintain the set of particles in the region of |r_1t(_arehe T
are null when miti(r —)[Q], (q—r)[Q]} > RwhereRis the ~ resampling is performed when the number of efficient parti-
maximal number of considered paths. The number of noncles is inferior toNihresnold = Npart /3.

null terms in (15) and (16) is equal Band the complexity is Once the forward and backward RDM have been obtained,the
reduced to QMQR). two RDM are used to calculate (6 € @) andpy(6« € @):
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EbNo0=2.4dB, sig =0.1047, 1heta‘me:6.26, t=410, 15t global iteration

‘theta

‘ ‘ 16 states trellis 4
Pf (ek S (RZI) = p(ek S %'rlikfl) :% * 32 forward particles i
(ek dek g ——— pdf from particles (16 states) i
= Joca ps (6k) = | . %*I‘*fg
Npart i 0 3 4 5 5
~(i i
~ o(6—6;;)d ;
erqh I; Wf’kil (Gk flk) Gk 5 041 16 states trellis i
. ; 0.3 * 32 backward particles 4
~ Z Vh\‘/(fll)kil. (22) % 0.2 ——— pdf from particles (16 states) ﬁ 4
i\@;l‘z(eqa] i Ol; %ﬁ‘ etk ‘*%%F k3 **\ﬁi
0 1 2 3 4 5 6
For the backward way: & oaf — t‘”.
g o6 ——— backward*forward pdf from particles )
S 04f 4
pb(ek € (R}) = p(ek € (ﬂ}lrkJrl:K) § 02fF i
~ Z VTIE)JI)(_H_. (23) = 004 i * f 2‘& f K‘3 f o L‘lk * - é
itel) . . .
1165k < Fig. 1. lllustration of the two random measure before the first
decoding
The complexity order of the particle filter is in
O(MNpart)+O(Qpg), Where Qpe is the number of phase
states considered in (22) and (23). 5. CONCLUSIONS
4. SIMULATION RESULTS In this paper we have considered the iterative decoding of

channels with strong phase noise. We propose to estimate
The performance of the proposed algorithm is compared tthe phase forward (resp. backward) posterior pdf by using
the discretized phase approach. The considered code isagandom discrete measure which is recursively updated with
(3,6)-regular LDPC code with codewords of length 4000. Thdhe particle filter algorithm. The complete phase posteuitir
chosen modulation is QPSK. A pilot symbol is inserted everygiven the past and future symbols) is the product of the two
20 transmitted symbols, plus one at the end of the frame. Agdf. The two RDM are therefore used to evaluate the for-
in [2], a severe phase noise model with = 6 degrees is Ward and the backward pdf on a common quantification of
assumed. In each method we perform 10 global iterations bé0  27) and the product of these two discretized pdf gives
tween the channel decoder and the phase estimator. In eagh estimation of the complete phase posterior pdf. The rel-
global iteration, 20 iterations over the LPDC graph are perevance of our proposal was evaluated through simulations,
formed. Figures 1 and 2 show examples of the backwarghowing only a slight degradation compared to the optimal
and forward random discrete measures and the reconstructéglillis based method. The proposed approach could also be
global posterior pdf at the first global iteration and therfbu ~ generalized to track the joint posterior pdf of several para
globaliteration respectively. For these figures, 32 pediare ~ eters such as the phase, the frequency shift and the channel
used. The pdf are observed at sampling thre410 and the ~ gain [11].
true phase was equal to 6.26 radians. The forward, backward
and complete pdf estimated using the two filters are close to 6. REFERENCES
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