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ABSTRACT

In this paper we consider the iterative decoding of chan-
nels with strong phase noise. We propose to use a random
discrete measure to estimate the phase posterior pdf given
the past observations (forward pdf) and another random dis-
crete measure to estimate the phase posterior pdf given the
future observations (backward pdf). The particle filter algo-
rithm is used to recursively generate the supports in the rele-
vant phase space area and recursively update the weights as-
sociated to these supports. An estimation of the phase pos-
terior pdf given all the past and future observations is then
derived from the forward and backward measures. The rele-
vance of our proposal is finally illustrated through simulation
of binary LDPC codes and QPSK modulation over a severe
Wiener-Levy phase noise with a standard deviation ofσ∆ = 6
degrees. Our algorithm is compared with a forward-backward
message passing algorithm performed over a trellis resulting
from the discretization of the phase. The proposed algorithm
leads to a a slight performance degradation compared to the
optimal treillis based method.

1. INTRODUCTION

Phase tracking has attracted an increasing interest in coherent
digital communications. Since estimating jointly the phase
and the data is generally intractable, a number of suboptimal
algorithms have been proposed using a phase estimator fol-
lowed by a data detector.
In order to improve the performance, one can use iterative es-
timation : at each iteration, a phase estimation is performed
using the soft channel decoder output from the previous esti-
mation, and then the soft channel decoder input is calculated
using the phase estimation.
If the channel phase is constant during one frame, the Expec-
tation Maximisation (EM) algorithm [1] can be performed.
When the phase is varies during the frame, the EM algorithm
cannot be directly applied and we need to perform a sliding
window version of the EM algorithm.
Assuming that the phase variation statistics are known by the
receiver (Bayesian approach), it becomes possible to give an-
alytical expressions of the time evolution of the phase pos-
terior pdf given the past observations (forward pdf) and the
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time evolution of the phase posterior pdf given the future ob-
servations (backward pdf). These two pdf directly lead to the
complete phase posterior pdf (given the past and the future ob-
servations). Yet, the expressions giving the time evolution of
the forward and backward posterior pdf involve inextricable
integral calculations, and they cannot be directly exploited.
Two types of suboptimal methods exist to estimate these pdf.
One consists in assuming that the pdf belongs to a parameter-
ized family of functions [2]: the family of functions is chosen
so that an analytical solution of the integrals can be reached.
The other type of method, based on the phase discretization,
is more efficient but requires a greater complexity: it con-
sists in dividing the phase state[0 2π) into Q equispaced in-
tervals and transforming the integrals into discrete sums [3].
The phase posterior pdf are then replaced by probability mass
functions on the discretized phase space and are recursively
computed. Using a factor graph representation, such methods
can be seen as a forward backward message passing algorithm
[4]. If Q is the number of phase states andM the modulation
size, the complexity of the trellis algorithm is in O(MQ2).
One solution to reduce this complexity is to assume that only
a few number of phase state transitionR are possible between
two successive sampling times. The complexity of this ”re-
duced Trellis” algorithm is then in O(MQR).
In this paper, we propose to use two random discrete mea-
sures (RDM) to estimate the phase posterior pdf given the
past observations and the phase posterior pdf given the future
observations. These RDM are estimated only in the relevant
zone, using two Sequential Importance Sampling Resampling
(SISR) algorithms, also known as Particle Filter (PF) algo-
rithms [5]. The PF algorithm recursively generates the RDM
supports and update the RDM weights. An estimation of the
phase posterior pdf given all the past and future observations
is then derived from the forward and backward measures.
This study follows some preliminary work presented in [6],
where the particle filter was used to calculate the forward and
backward messages of the message-passing algorithm. The
use of particle filter for strong phase noise synchronization
was also proposed in [7], but the authors only used the PF to
calculate a phase estimation, while we propose here to esti-
mate the phase posterior pdf.
The rest of the paper is organized as follow: the system model
is given in section 2, and the symbol posterior probability
(for the decoder input) is calculated in section 3, as a func-
tion of the forward and backward phase posterior pdf. The
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trellis method and the particle filter method are respectively
described in subsections 3.1 and 3.2. Section 4 presents and
discusses the simulation results and section 5 draws the con-
cluding remarks of this paper.

2. SYSTEM MODEL

Let {bl}l=1...L be a sequence of coded bits and{an}n=1...N its
mapping to a M-PSK constellationX . Let {ck}k=1...K be the
transmitted sequence built from{an} after Np pilot symbols
have been inserted(K = N + Np). We consider the following
equivalent baseband complex system model:

rk = cke jθk + nk k = 1, . . . ,K, (1)

wherenk is a complex circular gaussian noise with variance
σ2. We assume that the phase noiseθk can be modelled by
the following Wiener-Levy (random walk) process:

θk = (θk−1 + ∆k) mod 2π , (2)

where∆k is a white Gaussian noise with varianceσ2
∆. This

phase evolution model is a first order Markov process:

p(θk|θk−1, . . . ,θ0) = p(θk|θk−1). (3)

This evolution model is symmetrical and one can write:

θk = (θk+1−∆k+1) mod 2π , (4)

p(θk|θk+1, . . . ,θK) = p(θk|θk+1). (5)

(2) and (4) respectively represent the forward and backward
phase evolution model.

3. SYMBOL POSTERIOR PROBABILITY

The decision problem is given by:

b̂l = argmax
bl

p(bl|r)

= argmax
bl

∫
θ

p(bl,θ |r)dθ

= argmax
bl

∫
θ

∑
b={bm}m6=l

p(b,θ |r)dθ . (6)

This optimal solution is generally intractable and a subopti-
mal solution is to use an iterative estimation. At each itera-
tion, a phase estimation is performed using the soft informa-
tion bits provided by the channel decoder, and then the soft
information bits are calculated using the phase estimation.
The soft information bit is given byλ (bl) = log( p(bl=1|r)

p(bl=0|r)).

λ (bl) can be directly calculated from the set of symbol pos-
terior probabilities{p(ck = S|r)}S∈X , whereck is the sym-
bol which containsbl . To simplify the notation, symbolS is
omitted andp(ck = S|r) is simply notedp(ck|r). Marginaliz-
ing p(ck|r) on the phase parameterθk and applying the Bayes
relation leads to:

p(ck|r) =

∫
θk

p(ck,θk|r)dθk

=

∫
θk

p(ck,θk|r1:k−1,rk+1:K ,rk)dθk

∝
∫

θk

p(rk|ck,θk,r1:k−1,rk+1:K)

× p(ck,θk|r1:k−1,rk+1:K)dθk

∝
∫

θk

p(rk|ck,θk)

× p(ck|θk,r1:k−1,rk+1:K)

× p(θk|r1:k−1,rk+1:K)dθk. (7)

The first term of the integral in (7) is the complex circular
gaussian pdf:

p(rk|ck,θk) = NC(rk,cke jθk ,σ), (8)

whereNC(x,m,σ)
∆
= 1

2πσ2 exp{− 1
2σ2 ‖x−m‖2}. The second

term in (7) is equal to the symbol prior probability

p(ck|θk,r1:k−1,rk+1:K) =
1
M

. (9)

(7) therefore becomes:

p(ck|r) ∝
∫

θk

NC(rk,cke jθk ,σ)p(θk|r1:k−1,rk+1:K)dθk. (10)

p(θk|r1:k−1,rk+1:K) can be expressed as a function of the for-
ward posterior pdfp(θk|r1:k−1) and the backward posterior
pdf p(θk|rk+1:k):

p(θk|r1:k−1,rk+1:K) ∝ p(r1:k−1,rk+1:K |θk)

∝ p(rk+1:K |θk,r1:k−1)p(r1:k−1|θk)

∝ p(rk+1:K |θk)p(r1:k−1|θk)

∝ p(θk|r1:k−1)p(θk|rk+1:K), (11)

since givenθk, rk+1:K is independent onr1:k−1, p(θk) is a
uniform pdf andp(r1:k−1), p(rk+1:K), p(r1:k−1,rk+1:K) do not
depend onθk.
Equation (10) gives an analytical relationship between the
continuous pdfp(θk|r1:k−1,rk+1:K) and the symbol posterior
probability. The phase discretization approach consists in ap-
proximating the continuous pdfp(θk|r1:k−1,rk+1:K) by a dis-
crete probability measure: the phase space[0 2π) is divided

into Q equal intervalsφq of width 2π
Q and centerψq = (2q−1)π

Q .
Consequently, the continuous pdfp(θk|r1:k−1,rk+1:K) is re-
placed by the discrete probabilities{pu(θk ∈ φq)}q=1,...,Q de-
fined by:

pu(θk ∈ φq)
∆
= p(θk ∈ φq|r1:k−1,rk+1:K). (12)

Now p(ck|r) can be derived frompu with a discrete sum on
q:

p(ck|r) ∝
Q

∑
q=1

NC(rk,ckeiφq ,σ)pu(θk ∈ φq). (13)
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As in (11), pu(θk ∈ φq) can be expressed as a function of the

forward posterior probabilityp f (θk ∈ φq)
∆
= p(θk ∈ φq|r1:k−1)

and the backward posterior probabilitypb(θk ∈ φq)
∆
= p(θk ∈

φq|rk+1:K):

pu(θk ∈ φq) ∝ p f (θk ∈ φq)pb(θk ∈ φq). (14)

According to (11) and (13), the knowledge ofp f (θk ∈ φq) and
pb(θk ∈ φq) directly leads to the symbol posterior probabil-
ity. Two methods are now presented to estimatep f (θk ∈ φq)
and pb(θk ∈ φq). In subsection 3.1 the classical trellis ap-
proach is presented and in subsection 3.2 our approach based
on the RDM approximation is described. In these two sec-
tions{p(ck = x)}x∈X is the symbol probability provided by
the decoder output (from the previous iteration).

3.1. trellis

In the trellis approach [3],p f (θk ∈ φq) andpb(θk ∈ φq) are re-
cursively computed for allq using the following relationship:

p f (θk ∈ φq) = p(θk ∈ φq|r1:k−1)

=
Q

∑
r=1

p(θk ∈ φq,θk−1 ∈ φr|r1:k−1)

=
Q

∑
r=1

p(θk ∈ φq|θk−1 ∈ φr)

× p(θk−1 ∈ φr|r1:k−2,rk−1)

∝
Q

∑
r=1

p(θk ∈ φq|θk−1 ∈ φr)p(rk−1|θk−1 ∈ φr)

× p f (θk−1 ∈ φr), (15)

where the discrete transition probabilityp(θk ∈ φq|θk−1 ∈ φr)
can be obtained by matching the moments of the discrete pdf
and the Gaussian phase difference pdf associated to the model
(2). p(rk−1|θk−1 ∈ φr) is the observation likelihood, propor-
tional to∑x∈X p(ck = x)×NC(rk−1,xe jψr ,σ).
Equivalently, in the backward direction:

pb(θk ∈ φq) = p(θk ∈ φq|rk+1:K)

=
Q

∑
r=1

p(θk ∈ φq|θk+1 ∈ φr)

× p(rk+1|θk+1 ∈ φr)pb(θk+1 ∈ φr). (16)

The complexity of recursively computing the forward and
backward probabilities using (15) and (16) is in O(MQ2). To
reduce it, it is often assumed that the phase state transition
probabilitiesp(θk ∈ φq|θk−1 ∈ φr) and p(θk ∈ φq|θk+1 ∈ φr)
are null when min{(r−q)[Q],(q− r)[Q]}> R whereR is the
maximal number of considered paths. The number of non-
null terms in (15) and (16) is equal toR and the complexity is
reduced to O(MQR).

3.2. random discrete measure

We propose to approximate the two continuous pdf
p(θk|r1:k−1) andp(θk|rk+1:K) with two random discrete mea-

sures (RDM){θ (i)
f ,k, w̃

(i)
f ,k−1} and {θ ( j)

b,k , w̃( j)
b,k+1} respectively.

{θ (i)
f ,k, w̃

(i)
f ,k−1} is also called a set of particles,θ (i)

f ,k being the

particle support and ˜w(i)
f ,k−1 the particle weight [5]. The dif-

ference between the support index (k) and the weight index
(k−1) (resp. (k + 1)) in the forward (resp. backward) RDM
comes from the fact that we estimate a one-step prediction
posterior pdfp(θk|r1:k−1) (resp. p(θk|rk+1:K)) and not the
online posterior pdfp(θk|r1:k) (resp.p(θk|rk:K) ).

p(θk|r1:k−1) ≈
Npart

∑
i=1

w̃(i)
f ,k−1δ (θk −θ (i)

f ,k), (17)

p(θk|rk+1:K)) ≈
Npart

∑
j=1

w̃( j)
b,k+1δ (θk −θ ( j)

b,k ). (18)

Npart is the number of particles, ˜w(i)
f ,k−1 is the normalized

importance weight at timek associated with the particlei,

δ (θk − θ (i)
f ,k) denotes the Dirac function inθk = θ (i)

f ,k and the
subscriptsf andb stand for ”forward” and ”backward”.
We generate the supports and update the weights using the Se-
quential Importance Sampling Resampling (SISR) algorithm,
also known as Particle Filter (PF) algorithm [5]. For the for-
ward (resp. backward) algorithm, the particle supports are
recursively generated using the first order Markov evolution
model (2) (resp. (4)). It corresponds to the prior importance
function. Consequently, the particle weights are updated us-
ing the observation likelihoods:

forward PF: w(i)
f ,k = w(i)

f ,k−1p(rk|θ
(i)
f ,k), (19)

backward PF: w( j)
b,k = w( j)

b,k+1p(rk|θ
( j)
b,k ), (20)

where the observation likelihoodsp(rk|θ
(i)
f ,k) and p(rk|θ

( j)
b,k )

are calculated by marginalization on the transmitted symbol
probabilities :

p(rk|θk) = ∑
x∈X

p(ck = x)NC(rk,xe jθk ,σ). (21)

A resampling step is added to avoid the particle degeneracy
and maintain the set of particles in the region of interest. The
resampling is performed when the number of efficient parti-
cles is inferior toNthreshold = Npart/3.
Once the forward and backward RDM have been obtained,the
two RDM are used to calculatep f (θk ∈ φq) andpb(θk ∈ φq):
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p f (θk ∈ φq) = p(θk ∈ φq|r1:k−1)

=

∫
θk∈φq

p f (θk)dθk

≈

∫
θk∈φq

Npart

∑
i=1

w̃(i)
f ,k−1δ (θk −θ (i)

f ,k)dθk

≈ ∑
i|θ (i)

f ,k∈φq

w̃(i)
f ,k−1. (22)

For the backward way:

pb(θk ∈ φq) = p(θk ∈ φq|rk+1:K)

≈ ∑
j|θ ( j)

b,k ∈φq

w̃( j)
b,k+1. (23)

The complexity order of the particle filter is in
O(MNpart)+O(QPF), where QPF is the number of phase
states considered in (22) and (23).

4. SIMULATION RESULTS

The performance of the proposed algorithm is compared to
the discretized phase approach. The considered code is a
(3,6)-regular LDPC code with codewords of length 4000. The
chosen modulation is QPSK. A pilot symbol is inserted every
20 transmitted symbols, plus one at the end of the frame. As
in [2], a severe phase noise model withσ∆ = 6 degrees is
assumed. In each method we perform 10 global iterations be-
tween the channel decoder and the phase estimator. In each
global iteration, 20 iterations over the LPDC graph are per-
formed. Figures 1 and 2 show examples of the backward
and forward random discrete measures and the reconstructed
global posterior pdf at the first global iteration and the fourth
global iteration respectively. For these figures, 32 particles are
used. The pdf are observed at sampling timek = 410 and the
true phase was equal to 6.26 radians. The forward, backward
and complete pdf estimated using the two filters are close to
the pdf given by the trellis (figure 1). After four global iter-
ations, the estimated complete pdf is composed of only one
peak centered on the true phase value.
Figure 3 and Figure 4 give respectively the frame error rate
and bit error rate for different values ofEb/N0. For each
simulation point, at least 50 frame-errors have been received.
Npart = 8,16,32,64 particles have been used for the particle
filters algorithm withQPF = 16. For the phase discretization
(trellis) method, 8, 16 and 32 phase states have been con-
sidered. The performance obtained forQ = 32 can be con-
sidered as the maximum achievable performance [3], but no
performance degradation have been observed for the reduced
treillis with Q = 16. Compared to the treillis methods (full
or reduced), a degradation of less than 0.1 dB is observed for
the 48 particles proposed algorithm (target BER = 0.01). A
degradation of 0.15 dB (resp. 0.3 dB) is observed for the 16
particles (resp. 8 particles) proposed algorithm.
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Fig. 1. Illustration of the two random measure before the first
decoding

5. CONCLUSIONS

In this paper we have considered the iterative decoding of
channels with strong phase noise. We propose to estimate
the phase forward (resp. backward) posterior pdf by using
a random discrete measure which is recursively updated with
the particle filter algorithm. The complete phase posteriorpdf
(given the past and future symbols) is the product of the two
pdf. The two RDM are therefore used to evaluate the for-
ward and the backward pdf on a common quantification of
[0 2π) and the product of these two discretized pdf gives
an estimation of the complete phase posterior pdf. The rel-
evance of our proposal was evaluated through simulations,
showing only a slight degradation compared to the optimal
treillis based method. The proposed approach could also be
generalized to track the joint posterior pdf of several param-
eters such as the phase, the frequency shift and the channel
gain [11].
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