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ABSTRACT
This paper investigates the contribution of an additional sen-
sor to the performance of a passive AOA emitter localiza-
tion system. This problem arises in localization applica-
tions where additional sensor resources become available
and there is a need to determine where the new sensor should
be placed in order to achieve maximum performance im-
provement. The paper considers optimal placement of an
additional sensor and shows that optimal sensor placement
is determined by its angular position rather than the emitter
range. The results of the paper are illustrated with simula-
tion studies.

1. INTRODUCTION

The objective of passive emitter localization is to determine
the location of an emitter by processing the emitter signals
received by several sensors or a moving sensor platform. Pas-
sive emitter localization finds application in mobile commu-
nications, wireless sensor networks and electronic warfare,
to name but a few. The receiving platforms may employ sen-
sors capable of measuring angle of arrival (AOA), time of
arrival (TOA), time difference of arrival (TDOA), scan time,
Doppler shift or received signal strength. Hybrid localization
techniques combining some of these measurements are also
available.

In this paper we consider optimal sensor placement
for AOA localization employing stationary receiving plat-
forms. The AOA localization problem has a rich history
(see e.g. [1]). The key idea is to triangulate multiple bear-
ing lines emanating from sensors. The approach adopted in
this paper is to find optimal sensor locations by maximizing
the determinant of the Fisher information matrix [2]. This
is equivalent to minimizing the estimation uncertainty. The
Fisher information matrix may be approximated by replacing
the true emitter location with its maximum likelihood esti-
mate [3]. Optimal sensor placement methods for AOA local-
ization have been developed in [4]. The particular problem
that is of interest to us in this paper is the quantification of
performance improvement to be had by allocating an addi-
tional AOA sensor to an existing AOA localization system.
This then naturally leads to another optimization problem
which has the objective of finding the optimal placement for
the additional sensor based on the knowledge of other sen-
sors’ positions and a rough idea of the emitter location. An
elegant closed-form solution to this optimization problem is
developed. The simplicity of the optimal solution makes it
well-suited for practical implementation in sensor allocation
problems with redeployable sensors.

The paper is organized as follows. Section 2 provides
an outline of the AOA localization problem and derives the
Fisher information matrix for AOA localization. Section 3
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Figure 1: Two-dimensional AOA emitter localization.

derives a useful alternative expression for the Fisher infor-
mation matrix (FIM) that facilitates further analysis. The
effect of an additional AOA sensor on FIM is discussed in
Section 4. The optimum placement for the new sensor is also
analyzed and a new elegant solution is derived. Section 5
presents simulation studies to demonstrate the results of the
paper. Conclusions are drawn in Section 6.

2. AOA LOCALIZATION

We consider 2D localization by AOA measurements taken at
multiple sensors. The general AOA localization problem em-
ploying N sensors is depicted in Fig. 1 where p = [px, py]T is
the unknown emitter location with T denoting matrix trans-
pose and ri = [xi,yi]T is the location of the ith sensor, 1 ≤ i≤
N. The objective of AOA emitter localization is to estimate
the emitter location p from a set of bearing measurements
collected by N sensors. The estimation process involved tri-
angulation of the bearing lines emanating from the sensors.
The minimum number of AOA sensors required for 2D emit-
ter localization is two. However the larger N the better the
localization performance will be. The AOA measurement at
sensor i is given by

θ̃i = θi +ni, θi = tan−1 py − yi

px − xi
(1)

where ni ∼ N (0,σ2) is the additive i.i.d. zero-mean Gaus-
sian noise with variance σ2. For simplicity all sensors are
assumed to have identical noise variance regardless of the
emitter range.

The Fisher information matrix (FIM) for AOA localiza-
tion is [5]

Φ =
[
φ11 φ12
φ21 φ22

]
= JT

o Σ−1Jo (2)
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Figure 2: Illustration of 1-σ error ellipse and a realization of
estimates. The area of the ellipse is A1σ = π/|Φ|1/2.

where Jo is the Jacobian evaluated at the true emitter location

Jo =

⎡
⎢⎢⎢⎣

uT
1 /d1

uT
2 /d2

...
uT

N/dN

⎤
⎥⎥⎥⎦ , ui =

[−sinθi
cosθi

]
, di = ‖p− ri‖ (3)

and Σ is the AOA noise covariance matrix

Σ = σ2

⎡
⎣1 0

. . .
0 1

⎤
⎦

N×N

. (4)

FIM can be rewritten as

ΦN =
1
σ2

N

∑
i=1

1

d2
i

uiu
T
i . (5)

Here

ui =
[

0 −1
1 0

]
p− ri

di
(6)

is a unit vector orthogonal to the bearing vector emanating
from the ith sensor.

Observation 1 Moving a sensor from ri to 2p− ri (i.e., re-
flecting the sensor about the emitter) does not affect FIM.

This is easily seen from (5) where replacing ui with −ui for
any i, 1 ≤ i ≤ N, does not change FIM. In (6) substituting
2p− ri for ri results in ui becoming −ui, which verifies the
observation [4]. This property allows us to generate new op-
timal geometries from a given optimal localization geometry
by simply reflecting some of the sensors about the emitter
location.

As illustrated in Fig. 2, the area of the 1-σ error ellipse
(39.4% uncertainty region) of an efficient estimator is given
by A1σ = π/|Φ|1/2 where | · | denotes determinant. In this pa-
per we employ the criterion of maximizing the determinant

of FIM, which is equivalent to minimizing the area of un-
certainty ellipse, for finding the optimal sensor locations [2].
This criterion tacitly assumes that the localization algorithm
in use is nearly efficient so that its error covariance can be
approximated by CRLB, which is the inverse of FIM. The
equivalence of maximization of the determinant of FIM to
minimization of MSE (the trace of CRLB) has been shown
elsewhere [4].

3. ALTERNATIVE EXPRESSION FOR AOA FIM

In this section we will express FIM in an alternative way that
lends itself into further scrutiny. Writing ui = [ux(i),uy(i)]T
we have

uiu
T
i =

[
u2

x(i) ux(i)uy(i)
ux(i)uy(i) u2

y(i)

]
(7)

and

ΦN =
1
σ2

[
∑i

1
d2
i
u2

x(i) ∑i
1
d2
i
ux(i)uy(i)

∑i
1
d2
i
ux(i)uy(i) ∑i

1
d2
i
u2

y(i)

]
(8a)

=
1
σ2

[
∑i

1
d2
i

sin2 θi −∑i
1
d2
i

sinθi cosθi

−∑i
1
d2
i

sinθi cosθi ∑i
1
d2
i

cos2 θi

]
(8b)

=
1
σ2

[ 1
2 ∑i

1
d2
i
(1− cos2θi) − 1

2 ∑i
1
d2
i

sin2θi

− 1
2 ∑i

1
d2
i

sin2θi
1
2 ∑i

1
d2
i
(1 + cos2θi)

]
.

(8c)

The determinant of FIM can therefore be written as

|ΦN | = 1
4σ4

(( N

∑
i=1

1

d2
i

)2 −
( N

∑
i=1

1

d2
i

sin2θi

)2

−
( N

∑
i=1

1

d2
i

cos2θi

)2
)

. (9)

Since |ΦN | ≥ 0, for fixed di the maximization of |ΦN | over θi
is equivalent to the minimization of

( N

∑
i=1

1

d2
i

sin2θi

)2
+

( N

∑
i=1

1

d2
i

cos2θi

)2
(10)

over θi.

4. EFFECT OF ADDITIONAL SENSOR

For a given AOA localization geometry with N sensors the
determinant of Fisher information matrix (FIM) is given
by (9). Suppose that another sensor is added to the system
bringing the number of sensors to N + 1. The increase in
the determinant of FIM due to the inclusion of the (N + 1)th
sensor can be expressed as

|ΦN+1|−|ΦN |= 1

2σ4d2
N+1

( N

∑
i=1

1

d2
i

−sin2θN+1

N

∑
i=1

1

d2
i

sin 2θi

− cos2θN+1

N

∑
i=1

1

d2
i

cos2θi

)
. (11)
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Applying the trigonometric identity cos(a − b) =
cosacosb + sinasinb to the above expression, we ob-
tain

|ΦN+1|− |ΦN | = 1

2σ4d2
N+1

N

∑
i=1

1

d2
i

(1− cos2(θi −θN+1)).

(12)
An analysis of (12) leads to the conclusion that we have
|ΦN+1| > |ΦN |, i.e., the additional sensor improves the lo-
calization performance, unless

• dN+1 → ∞, or
• θi = θN+1 for i = 1, . . . ,N, implying all bearing vectors

are aligned,

in which case |ΦN+1| = |ΦN |, i.e., the additional sensor does
not improve the localization performance. In practice the first
case arises if the new sensor is too far away from the emitter.
The second case occurs when the range-to-baseline ratio is
extremely large.

An increase in the determinant of FIM leads to a smaller
uncertainty area (better estimation performance) since the
area of the 1-σ error ellipse (39.4% uncertainty region) is
given by A1σ = π/|Φ|1/2.

Equation (12) also provides insight into where the addi-
tional sensor should be placed to maximally improve the per-
formance of an existing AOA localization system. Assuming
that the range of the new sensor dM+1 is fixed, the optimal
bearing angle θN+1 is obtained from

θ ∗
N+1 = argmax

θN+1

N

∑
i=1

1

d2
i

(1− cos2(θi −θN+1)) (13a)

= argmin
θN+1

N

∑
i=1

1

d2
i

cos2(θi −θN+1). (13b)

Note that the optimal angle θ ∗
N+1 is independent of the new

sensor range dN+1. Defining

vi =
[

cos2θi
sin2θi

]
, s =

N

∑
i=1

1

d2
i

vi (14)

(13b) can be equivalently written as

θ ∗
N+1 =

{− 1
2(π −∠s)

− 1
2(π −∠s)+π

(15)

where ∠s denotes the bearing angle of s. We formally have
the following theorem:

Theorem 1 The optimum AOA angle for an additional (N +
1)th sensor maximizing the performance improvement of an
AOA localization system is given by (15).

This optimization problem can be interpreted as follows.
Find the sum of vectors vi weighted by 1/d2

i . Determine the
rotation angle for the sum vector that makes it aligned with
the negative x-axis. This solves the minimization problem
in (13b). Half of the negative rotation angle gives the optimal
bearing angle for the additional sensor. From Observation 1
we see that adding π rad to the optimal angle does not affect
FIM, thereby giving another optimal angle.

5. SIMULATION STUDIES

Several AOA localization geometries have been simulated to
demonstrate the application of Theorem 1. All simulated ge-
ometries have N = 4 sensors with AOA noise variance 5◦.
The emitter is at the origin. In the first simulated geometry
the emitter ranges are d1 = 100 km, d2 = 90 km, d3 = 70 km
and d4 = 80 km. The AOA angles are θ1 = 0◦, θ2 = 30◦,
θ3 = 50◦ and θ4 = 80◦. A fifth AOA sensor is added to the
system at range d5 = 120 km. Fig. 3 shows the variation of
determinant of FIM as a function of θ5 and the determinant
of FIM for the original system with four sensors. The addi-
tional sensor is seen to increase the determinant of FIM as
expected. The maximal increase is attained at θ ∗

5 given by
(15). Fig. 4 shows the original geometry and the geometry
with the optimally placed additional sensor. The 1-σ error
ellipses and uncertainty areas are compared in Fig. 5. The top
error ellipse is for the original geometry and the lower error
ellipse is obtained after the addition of another sensor that is
optimally positioned. The lower error ellipse has a smaller
area, confirming the performance improvement achieved.

In the second simulation example the emitter ranges are
set to d1 = 60 km, d2 = 90 km, d3 = 60 km and d4 = 50 km.
The AOA angles are θ1 = 0◦, θ2 = 90◦, θ3 = −90◦ and
θ4 = 180◦. A fifth AOA sensor is added to the system at
range d5 = 80 km. Fig. 6 shows the variation of determinant
of FIM as a function of θ5 and the determinant of FIM for
the original system with four sensors. Fig. 7 shows the orig-
inal geometry and the geometry with the optimally placed
additional sensor. Note that the original geometry has almost
optimal sensor placement. The optimal position for the addi-
tional sensor is aligned with one of the sensors having a large
range. This is intuitively expected as it reduces the variance
of the AOA measurement taken by the sensor at long range.
The 1-σ error ellipses and uncertainty areas are compared in
Fig. 8.
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Figure 3: Determinant of FIM with additional sensor as a
function of its AOA angle θ5 and determinant of FIM for
original system with four sensors (dashed line). Determi-
nant of FIM is maximized at θ ∗

5 =−43.3735◦ and 136.6265◦
marked with “*”.
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Figure 4: Original geometry and same geometry with opti-
mally placed additional sensor.
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Figure 5: 1-σ error ellipses for original geometry and after
addition of an optimally placed sensor.

The emitter ranges are set to d1 = 80 km, d2 = 90 km,
d3 = 80 km and d4 = 100 km in the final simulation exam-
ple. The AOA angles are θ1 = 0◦, θ2 = 10◦, θ3 = −20◦
and θ4 = 30◦. A fifth AOA sensor is added to the system
at range d5 = 80 km. Fig. 9 shows the variation of deter-
minant of FIM as a function of θ5 and the determinant of
FIM for the original system with four sensors. Fig. 10 shows
the original geometry and the geometry with the optimally
placed additional sensor. The optimal placement of the ad-
ditional sensor resembles an almost perpendicular separation
between the clustered original system sensors and the new
sensor. The 1-σ error ellipses shown in Fig. 11 indicate a
significant performance improvement achieved by the opti-
mally placed new sensor.
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Figure 6: Determinant of FIM with additional sensor as a
function of its AOA angle θ5 and determinant of FIM for
original system with four sensors (dashed line).

Original geometry

1

2

3

4

Optimal geometry with additional sensor

1

2

3

4

5

Figure 7: Original geometry and same geometry with opti-
mally placed additional sensor.
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Figure 8: 1-σ error ellipses for original geometry and after
addition of an optimally placed sensor.
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6. CONCLUSION

This paper has analyzed the performance improvement con-
tributed by an additional AOA sensor to an existing AOA
localization system. Optimal placement of the new sensor
in order to maximize the performance improvement was also
considered. The analysis led to the derivation of elegant op-
timization results for AOA sensor placement. The analysis
assumed prior knowledge of the emitter location. This is not
a major impediment to the usefulness of the results since a
rough idea of the emitter location is often sufficient to ob-
tain sensor placement results leading to significantly superior
performance. The effectiveness of the results was illustrated
with several simulation studies.
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function of its AOA angle θ5 and determinant of FIM for
original system with four sensors (dashed line).
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