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ABSTRACT
This paper focuses on the development of an automatic sound
classifier for digital hearing aids that aims to enhance the
listening comprehension when the user goes from a sound
environment to another different one. The implemented ap-
proach consists in dividing the classifying algorithm into two
layers that make use of two-class algorithms that work more
efficiently: the input signal discriminated by the first layer
into either speech or non-speech is ulteriorly classified more
specifically depending on whether the audio is noise or mu-
sic. The complete system results in having three classes,
labeled “speech”, “noise” and “music”. The classification
process is carried out by using a mean squared error linear
discriminant, which provides very good results along with
a low computational complexity. This is a crucial issue be-
cause hearing aids have to work at very low clock frequency.
The paper explores the feasibility of this approach thanks to a
number of experiments that prove the advantages of using the
proposed two-layer system rather than a three-classes, single-
layer classifier.

1. INTRODUCTION

A particular application that would deem as very appreci-
ated by hearing aid users, specially by those eldest, is that in
which the hearing aid itself classifies the acoustic environ-
ment that surrounds him/her, and automatically selects the
amplification “program” that is best adapted to such environ-
ment (“self-adaptation”). The “manual” approach, in which
the user has to identify the acoustic surroundings and choose
the adequate program, is very uncomfortable and frequently
exceeds the abilities of many hearing aid users. Only about
25% of people owning a hearing aid (a scarce 20% of those
that could benefit from hearing aids) wear it because of the
unpleasant whistles and/or other amplified noises caused by
the surrounding background noise they encounter in their ev-
eryday life, and in particular, when moving from one acous-
tic ambient (for example, speech in quiet) to another different
one (say, for instance, a crowded cafe) for which the current
program is not fitted (the user thus hears a sudden, uncom-
fortable amplified noise). This illustrates the necessity for
hearing aids able to automatically classify the acoustic envi-
ronment the user is in. This type of hearing aid could help the
user to improve speech intelligibility, increasing his/her com-
fort level and allowing the user to lead a normal life. With
respect to comfort, a study [4] with hearing impaired sub-
jects suggests that the automatic switching is deemed useful

1This work has been partially funded by the Comunidad de
Madrid/Universidad de Alcalá (CCG06-UAH/TIC-0378, CCG07-
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by most of them, even if its performance is not completely
perfect.

The problem becomes more difficult because designing
such classifier embedded in a hearing aid is constrained to
a very strong limitation: the digital signal processing (DSP)
the hearing aid is based on has to work at very low clock
frequency in order to minimize power consumption and thus
maximize battery life.

Regarding the mentioned issues, the purpose of this work
is just the development of a two-layer sound classifier, which
programmed on a DSP-based hearing aid, assists it to en-
hance the user’s listening skills, without increasing its com-
putational load. In our previous work [1], it has been shown
that the use of a two-layer classification system may provide
some interesting advantages. This is just the reason that com-
pels us to explore a divide-and-conquer strategy that leads
to a classification systems composed of two more special-
ized classifying layers. The first one discriminates the input
sound into either speech or non-speech, this second category
being named “noise” in our work. If the discriminated sig-
nal has been found to be speech, a second algorithm in the
second layer classifies it into either speech in quiet or speech
in noise. The particular class of classifying algorithm we
have implemented in the present approach is a mean squared
error linear discriminant, because it provides very good re-
sults along with a low computational complexity, as required
by the DSP limitations.

In the effort of making the paper to stand by-itself, after
summarizing the important limitations (Section 2) the system
suffers from, the paper centers on designing the particular
implementation of the mean squared error linear discrimi-
nant in Section 3. The paper is completed with the experi-
mental work (4), and the discussion of the results (5).

2. DESIGN CONSTRAINTS

As mentioned, DSP-based hearing aids have generally very
strong constraints in terms of computational capacity and
memory. These restrictions arise mainly from the small size
of the hearing aid −specially for the smallest in-the-canal
(ITC) or completely-in-the-canal (CIC)−, which must ad-
ditionally contain a small battery for supplying energy to
the DSP. Note that, generally, the DSP has to integrate not
only the CPU core but also the A/D and D/A converters,
the filter-bank, the RAM, ROM and EPROM memories and
some input/output ports. The immediate consequence is that
the hearing aid has to work at very low clock frequencies
(around 2MHz) in order to minimize the power consumption
and thus maximize the life of the battery. Additionally, the
restrictions become stronger because a considerable part of
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Feature Name
Number
1 Spectral Centroid (SC) [9]
2 Spectral Roll-Off (RO) [9]
3 Voice2White (V2W) [6]
4 Spectral Flux (Flux) [9]
5 Zero Crossing Rate (ZCR) [9]
6 Short-Time Energy (STE) [9]
7 Percentage of Low Energy Frames (LFE) [8]
8 High Zero Crossing Rate Ratio (HZCRR) [7]
9 Low Short-Time Energy Rate (LSTER) [7]
10 Spectral Flatness Measure (SFM) [3]
11 Mel Frequency Cepstral Coefficients (MFCC) [5]
12 Loudness (Ldn)
13 Spectral Crest Factor (SCF)
14 Bandwidth (BW)

Table 1: List of the 14 considered features for the classifica-
tion process.

the DSP computational capabilities are already being used
for running the algorithms aiming to compensate the acous-
tic losses. For instance, the filter-bank requires about 50%
of the DSP computation time. Therefore, the design of any
automatic sound classifier is strongly constrained to the use
of the remaining resources of the DSP: roughly speaking, the
computational power available does not exceed 3 MIPS, with
only 32 Kbytes of internal memory. The time/frequency de-
composition is performed by using an integrated Weighted
Overlap-Add filter-bank, with 64 frequency bands.

To complete this brief section it is worth mentioning that
the complete implementation of the hearing aid itself is out
of the scope of this paper, whose purpose is, as pointed out
in the Introduction, to select a reduced number of signal-
describing features to be programmed on a DSP for auto-
matic sound classification.

3. THE PROPOSED SYSTEM

It basically consists of a feature extraction block, and the
aforementioned classifier based on a mean squared error lin-
ear discriminant.

3.1 Feature Extraction
For being digitally processed, the input audio signal is seg-
mented into frames with a length of 512 samples (23.22 ms
for the considered sampling frequency), and with no overlap
between adjacent frames. Then, a Discrete Cosine Transform
(DCT) is computed [2], and all the considered features are
calculated. Finally, the mean and standard deviation values
are computed every 2 seconds in order to soften the values.

A total of 14 different, sound-describing features, listed
in table 1, has been considered in the present approach. More
detailed considerations about them will be done later on.

3.2 Classification System
A Mean Squared Error (MSE) linear discriminant has been
chosen, as mentioned in the Introduction, because of its sim-
plicity and good results. In this kind of linear classifier, the
decision rule depends on a linear combination of the input
features that has been computed in the previous stage:

g = f

(
b+

L

∑
n=1

xnwn

)
(1)

where xn represents the values of the n− th feature, L repre-
sents the number of input features, b the bias value, and wn
the weights of the linear combination. In order to obtain a
decision, C different evaluations of the expression above are
calculated, one for each class. The final decision corresponds
to the linear combination with the highest result.

This process can be described using matrix notation. Let
us define the input patterns matrix as:

Q =


x11 x12 x13 . . . x1N
...

...
...

. . .
...

xL1 xL2 xL3 . . . xLN
1 1 1 . . . 1

 (2)

where N represents the number of input patterns, and L the
dimension of each pattern. Note that the last row equals 1 in
order to define the weights of the classifier as:

V =


w11 w21 . . . wL1 b1
w12 w22 . . . wL2 b2

...
...

. . .
...

...
w1C w2C . . . wLC bC

 (3)

where C represents the number of classes to classify (C = 3
in our case).

The output of the classifier can be defined as:

Y = V ·Q (4)

Y being a matrix with C rows and N columns.
The error can be defined as:

E = Y−T = V ·Q−T (5)

where T represents a C × N matrix containing the target
classes for each input pattern. If we define the mean squared
error (MSE) as:

MSE =
1

NC

N

∑
n=1

C

∑
c=1

e2
cn (6)

we can therefore derive with respect to the coefficients wi j
and minimize the MSE. The result obtained is found to be:

V = T ·QT ·
(
Q ·QT )−1

(7)

4. EXPERIMENTAL SETUP

Prior to the description of the experiments carried out and the
discussion of the corresponding results it is convenient: 1) to
describe the database used, and 2 ) to define a tool able to
measure how accurate the results are.

4.1 Database Used
The sound database we have used for the experiments con-
sisted of a total of 2936 files, with a length of 2.5 seconds
each. The sampling frequency was 22050 Hz with 16 bits
per sample. The files corresponded to the following cate-
gories: speech, music and noise. Noise sources were var-
ied, including those corresponding to the following environ-
ments: aircraft, bus, cafe, car, kindergarden, living room, na-
ture, school, shop, sports, traffic, train, train station. Music
files were both vocal and instrumental. The files with speech
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in noise presented different Signal to Noise Ratios (SNRs)
ranging from 0 to 10 dB.

The database was then divided into three different sets
for training, validation and test, including 1074 (35%), 405
(15%) and 1457 (50%) files respectively. The division was
made randomly and ensuring that the relative proportion of
files of each category was preserved for each set.

4.2 Relative error analysis
When comparing the results from different experiments one
wonders which of the differences observed in the probability
of correct classification achieved by the different approaches
may be considered as statistically significant or not. In this
respect it is important to analyze the relative error ε ˆPCC

of the
estimator of probability of correct classification, P̂CC, with a
given confidence interval ξ , which is given by [10]:

ε
2

ˆPCC
≤

(1−PCC) ·
[
Q−1(ξ/2)

]2
M ·PCC

(8)

where PCC is the probability to be calculated, M is the
number of elements in the test set and Q−1(x) the comple-
mentary error function defined as

Q(x) =
∫

∞

x

1√
2π

exp
(
− t2

2

)
dt (9)

For our application, and assuming a confidence interval
ξ = 0.99, and probabilities around 0.95, the relative error for
the estimation is ε ˆPCC

< 10−4. That is, a 0.01% relative error
should be expected. A more conservative value of 0.1% will
be considered, meaning that only those differences between
probabilities of correct classification above this value will be
considered as significative.

5. THE COMPLETE SYSTEM: RESULTS

The batch of experiments have been carried as follows:
• Each possible combination of features has been consid-

ered. Since there are 14 available features, the total num-

ber of combinations equals
14
∑

k=1

(14
k

)
= 214−1.

• For each combination of features, the classifier has been
trained, and the error probability for the validation set has
been evaluated.

• For each number of features, the best result in terms of
probability of error for the validation set has been chosen.
Finally, the probability of error for the test set has been
computed by using this combination of features.
Aiming at exploring the advantages of the proposed ap-

proach we have compared it with the single-layer classifier
described below.

5.1 One-layer classifier
This approach consists in using a single three-classes clas-
sifier to distinguish among speech, music and noise. Figure
1 shows the results obtained for the classification of sounds
among speech, noise and music. It illustrates the error prob-
abilities obtained for both the validation and the test sets for
each possible number of selected features, m. Note that the
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Figure 1: Probabilities of error for the validation (dashed
line) and test (solid line) sets achieved for different numbers
of input features by the 3-classes classifier.

Number of pVal pTest Features used
features
1 11.85 13.11 11
2 8.64 12.01 4, 11
3 6.67 11.53 3, 4 ,11
4 5.19 7.82 4, 6, 11, 14
5 4.94 8.30 4, 6, 11, 12, 14
6 4.44 6.18 4, 6, 10, 11, 13, 14
7 3.95 6.04 4, 5, 6, 10, 11, 13, 14
8 3.70 5.83 4, 5, 6, 10, 11, 12, 13, 14
9 3.70 5.97 3, 4, 5, 6, 9, 10, 11, 13, 14
10 3.46 4.67 2, 3, 4, 5, 6, 10, 11, 12, 13, 14
11 3.21 4.80 2, 3, 4, 5, 6, 9 10, 11, 12, 13, 14
12 3.46 4.53 1, 2, 3, 4, 5, 6, 9 10, 11, 12, 13, 14
13 3.70 5.08 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14
14 4.20 5.08 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

Table 2: Probabilities of error for the validation and test sets,
and features used for the single-layer speech/music/noise
classifier.

best result for the validation set is obtained for m = 11, cor-
responding to a probability of error with the test set equal to
4.80%.

These results are shown in Table 2, together with the fea-
tures selected for each case. Note that the MFCCs (feature
11) is always present, the same for the spectral flux (feature
4). The less-used features are the HZCRR, LEF and SC.

For clarity, Figure 2 illustrates the histogram of the fea-
tures selected.

5.2 The proposed two-layer classifier
This approach consists in using two cascaded 2-class classi-
fiers. The first classifier aims to distinguish between speech
and non-speech, while the second one would classify he lat-
ter in either music or noise. This approach has the advantage
of making use of two more-specialized classifiers which can
easier be trained and implemented.

Figures 3 and 4 show the results obtained for the vali-
dation and test sets as a function of the different numbers of
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Figure 2: Histogram of the selected features for the single-
layer speech/music/noise classifier
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Figure 3: Probabilities of error achieved by the speech/non-
speech classifier for the validation (dashed line) and the test
(solid line) sets for different numbers of input features.

input features. Note that the second layer classifier (music vs.
noise) achieves a zero probability of error for the validation
set if the number of features is higher than 2.

For the sake of clarity, the best set of selected features
(according to the probability of error for the validation set),
for each number of input features, has been listed in Tables 3
and 4.

5.3 1-layer vs. 2-layers
Given the results presented in the previous sections, it is in-
teresting to wonder whether it is worth using a two-layer
classifier for the proposed problem. Two factors need to be
taken into account: the performance of the classifier and its
computational complexity.

Regarding the computational complexity, it is interesting
to discuss the difference between using a single 3-class clas-
sifier, or two 2-class, cascaded classifiers. Recalling equation
4, the MSE linear discriminant classifier requires C · (L+1)
sums and multiplications for each input pattern, with L be-
ing the number of input features and C the number of output
classes. For the case of a single layer, three-classes classifier,
this number turns into 3 · (L+1). If only 2 classes are being
considered, there is no need for two outputs but only one,
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Figure 4: Probabilities of error achieved by the music/noise
classifier for the validation (dashed line) and the test (solid
line) sets for different numbers of input features.

Number of pVal pTest Features used
features
1 7.41 10.71 11
2 6.67 10.71 8, 11
3 4.94 10.23 1, 11 ,12
4 4.69 9.61 2, 11, 12, 13
5 3.70 8.65 2, 5, 10, 11, 13
6 3.21 6.93 1, 4, 6, 10, 11, 14
7 2.96 7.96 2, 5, 7, 10, 11, 13, 14
8 2.96 6.38 1, 2, 4, 6, 8, 10, 11, 14
9 2.96 6.86 1, 2, 4, 6, 7, 9, 10, 11, 14
10 2.96 6.93 1, 2, 4, 6, 7, 8, 9, 10, 11, 14
11 2.72 5.70 1, 2, 3, 4, 6, 7 9, 10, 11, 12, 14
12 2.96 5.83 1, 2, 3, 4, 6, 7, 8 9, 10, 11, 12, 14
13 3.21 5.63 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14
14 3.95 5.49 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

Table 3: Probabilities of error for the validation and test sets,
and features used for the speech/non-speech classifier.

since it is equivalent to decide based on the maximum value
of two outputs or on the thresholded value of only one out-
put. With this in mind, a two-classes classifier would require
L + 1 sums and multiplications, and thus a two-layer classi-
fier would imply only 2 · (L+1) sums and multiplications,
50% less than for the three-classes classifier.

As it was commented above, hearing aids suffer from
strong computational complexity constraints. The best so-
lution achieved by the 3-classes classifier returns a probabil-
ity of error equal to 4.80%, with 11 features. This number
of features is, however, excessive given their computational
cost. A number of features like 2 or 3 seems much more fea-
sible. With this constraint, the probability of error achieved
by this classifier equals 11.53% (with 3 features).

On the other hand, for the 2-layers classifier, the best op-
tion is to use 11 features for the speech/non-speech task, and
3 features for the music/noise task. This combination re-
turns a probability of error equal to 6.38% and 1.01% for
the speech/non-speech and the music/noise problems respec-
tively. Like for the previous case, this number of features is
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Number of pVal pTest Features used
features
1 5.65 5.43 11
2 2.42 1.01 10, 11
3 0.00 1.01 6, 10 ,11
4 0.00 0.60 10, 11, 12, 14
5 0.00 0.20 10, 11, 12, 13, 14
6 0.00 0.40 9, 10, 11, 12, 13, 14
7 0.00 0.40 8, 9, 10, 11, 12, 13, 14
8 0.00 0.40 7, 8, 9, 10, 11, 12, 13, 14
9 0.00 0.40 6, 7, 8, 9, 10, 11, 12, 13, 14
10 0.00 0.40 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
11 0.00 0.20 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
12 0.00 0.00 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
13 0.00 0.20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
14 0.00 0.00 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

Table 4: Probabilities of error for the validation and test sets,
and features used for the music/noise classifier.

excessive, and should be reduced. If we consider only 3 fea-
tures for each classifier, these probabilities become 10.23%
and 1.01%. However, these 3 features are not the same for
both classifiers (in fact, only one of them is common), and
thus the comparison would not be fair. If the same three fea-
tures are considered for both layers, the results obtained are
10.23% for the speech/non-speech classification and 1.41%
for the music/noise classification. This implies a final prob-
ability of error among the three classes equal to 10.65%,
slightly lower than the 11.53% achieved with the one-layer,
three-classes classifier.

However, as it was commented above, the single layer
classifier has a higher computational complexity. For
the same computational complexity, it is possible to use
(3L+1)/2 input features instead of L with the two-layer
classifier. This means that while the three-classes classi-
fier would use only 3 input features, the two-layers classifier
could use 5 input features while maintaining the same com-
putational complexity for the classifier. With this, the proba-
bilities of error achieved with the two-layers classifier would
be 8.65% for the speech/non-speech problem and 0.60% for
the music/noise classifier (considering that the same features
are used for both classifiers). This returns an overall mean
probability of error equal to 8.83%.

6. DISCUSSION

In this paper we have explored a two-layer, MSE-linear-
discriminant-based classifier to be implemented on hearing
aids in the effort of solving their irregular use. Although
hearing losses disqualify many people from holding a nor-
mal life, however, many of them do not make use of hearing
aids. This is because many hearing aids in the market cannot
automatically adapt to the changing acoustical environment
the user daily faces on. Within this framework, this paper
has focused on the development of the mentioned automatic
sound classifier for digital hearing aids that, constrained to
the computational limitations of these devices, aims to en-
hance the listening comprehension when the user goes from
a sound environment to another different one.

The kind of classifying algorithm explored here has been
the MSE linear discriminant that exhibits very good results
and assists in the goal of using efficiently the scarce compu-
tational resources. The particular structure we have adopted
is based on a divide-and-conquer strategy that leads to a lay-

ered structure with 2 layers, 2 binary classifiers, and three
classes (speech, music and noise). The first layer centers on
classifying the input signal into either speech or non-speech.
The second layer discriminates audio files between music
and noise.

In order to check the results, we have carried out a
number of experiments to compare the proposed 2-layer, 3-
class, MSE-linear-discrimant-based approach with that cor-
responding to a three-classes, single-layer classifier. This
comparison has been evaluated in terms of both computa-
tional complexity and performance. The experiments prove
that the two-layer approach presents a lower computational
complexity in terms of number of sums and multiplications
required to obtain an output. For a similar computational
complexity, the single-layer system obtains an error proba-
bility equal 11.53%, while the dual-layer system reduces the
error probability down to 8.83%.
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